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Abstract  The performances of decision-making units (DMUs) can be evaluated from two different 
points of view optimistic and pessimistic and accordingly, two different efficiencies can be calculated 
for each DMU: the best relative efficiency and the worst relative efficiency. In the conventional 
methods of data envelopment analysis (DEA), only the best relative efficiency is evaluated. It is 
argued here that both efficiencies must be considered simultaneously, and any approach that considers 
only one of them will be biased. In this paper, it is proposed that to integrate both efficiencies in the 
form of an interval evaluates the overall performance of each DMU. To this end, a virtual DMU is 
used called the ideal DMU. The new DEA models with upper and lower bounds on efficiency are 
called the bounded DEA models. A numerical example is presented to illustrate the application of the 
proposed DEA models. 
 
Keywords  Data Envelopment Analysis (DEA), Optimistic and Pessimistic Efficiencies, Bounded 
DEA Models, Efficiency Interval. 
 
 
1 Introduction 
 
It has been known that the performances of decision-making units (DMUs) can be measured 
from different points of view. Data envelopment analysis (DEA), developed by Charnes et al. 
[1], measures the performances of DMUs from the optimistic point of view. The 
corresponding efficiencies are referred to as the best relative efficiencies or optimistic 
efficiencies, which are restricted to be greater than or equal to one. If a DMU is evaluated to 
have the best relative efficiency of one, then it is said to be DEA efficient or optimistic 
efficient; otherwise, it is said to be optimistic non-efficient. Optimistic efficient DMUs are 
usually thought to perform better than optimistic non-efficient DMUs. 

On the other hand, the performances of DMUs can also be measured from the pessimistic 
point of view. The efficiencies measured from the pessimistic viewpoint may be referred to as 
the worst relative efficiencies or pessimistic efficiencies, which are measured within the range 
of less than or equal to one. Contrary to the best relative efficiencies that determine an 
efficiency frontier, the worst relative efficiencies of DMUs define an inefficiency frontier. If a 
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DMU is evaluated to have the worst relative efficiency of one, then it is said to be pessimistic 
inefficient; otherwise, it is said to be pessimistic non-inefficient. Pessimistic inefficient 
DMUs are usually thought to perform worse than pessimistic non-inefficient DMUs. 

From the above analyses we can see that efficiency is a relative measure. It can be 
measured either within the range of less than or equal to one, or within the range of greater 
than or equal to one. When measured within different ranges, it has different meanings. The 
resultant assessment conclusions are usually different. Any assessment using only one type of 
efficiency is obviously one-sided. Ideally, both types of efficiencies should be used at the 
same time to assess the performances of DMUs. 

In order to have an overall assessment of the performance of each DMU, we must 
consider both optimistic and pessimistic efficiencies simultaneously. Entani et al. [2] studied 
the performances of DMUs from both optimistic and pessimistic points of view. In their DEA 
models, optimistic and pessimistic efficiencies are used to form an interval. Their idea was 
that the efficiency of a DMU is the interval between the optimistic and the pessimistic values. 
However, their DEA model for computation of the optimistic efficiency of each DMU has a 
major drawback; namely, it does not take into account some of the input and output data. 
Their method practically considers the data of only one input and one output for the DMU 
under evaluation and ignores the rest of the input and output data. Furthermore, their model is 
not able to identify DEA-efficient DMUs adequately. 

Wang and Luo [3] measure the optimistic and the pessimistic efficiencies of DMUs by 
introducing two virtual DMUs: ideal DMU (IDMU) and anti-ideal DMU, and integrate the 
two efficiencies into a relative closeness index, which servers as the basis for ranking DMUs. 
But in most cases, their models use fixed weights for all DMUs. 

Wang and Yang [4] proposed a bounded DEA models for precise data. The bounded 
DEA models makes the most of all input and output information to measure both the best and 
the worst possible relative efficiencies of each DMU by introducing a virtual anti-ideal DMU, 
which consumes the most inputs only to produce the least outputs. It can therefore identify 
both the efficiency and inefficiency frontiers. 

In this paper, we reconsider the problem of performance measurement. We measure the 
efficiencies of DMUs within the range of an interval so that the worst and the best relative 
efficiencies can be measured within a unified DEA model framework. In order to determine 
the range of interval efficiency, a virtual IDMU is introduced, whose performance is 
definitely the best among all the DMUs. So, its worst relative efficiency can be utilized as the 
constraint on the lower bound efficiencies of DMUs. A new DEA model with the upper and 
lower bounds on efficiencies is thus developed to compute the worst and the best relative 
efficiencies of each DMU, which constitute an interval to give an overall assessment of the 
performance of each DMU. 

The rest of this article is organized as follows. Section 2 introduces basic DEA models 
for measurement of optimistic and pessimistic efficiencies of DMUs. Section 3 initially 
discusses Entani et al.’s [2] models and then presents the bounded DEA models. Section 4 
compares the bounded DEA models and Entani et al.’s [2] models using a numerical example. 
Conclusions are set forth in Section 5. 

 
2 DEA models for measuring the best and the worst relative efficiencies 
2.1 DEA model for measuring the best relative efficiencies of DMUs 
 
Assume that we want to evaluate n  DMUs, each DMU consuming different amounts of m  
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inputs to produce r  different outputs. In other words, DMUj ( nj ,,1…= ) consumes the 
amounts xij ( mi ,,1…= ) of inputs and produces the amounts yrj ( sr ,,1…= ) of outputs, all of 
which are known and non-negative, and each DMU has at least one positive input and one 
positive output. 

In order to measure the efficiency of jDMU  relative to other DMUs, Charnes et al. [1] 
developed the following CCR model, which measures the best relative efficiency of DMUs in 
the output-oriented mode: 
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Where oDMU  denotes the DMU under evaluation; iv  ( mi ,,1…= ) and ru  ( sr ,,1…= ) 

are decision variables; and ε  is the non-Archimedean infinitesimal. Using Charnes and 
Cooper’s [5] transformation, the above fractional programming model can be converted into 
the following linear programming (LP) model: 
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If there exists a set of positive weights that makes 1* =oθ , then oDMU  is referred to be 

DEA efficient; otherwise, we call it to be DEA non-efficient rather than DEA inefficient 
because DEA non-efficient does not necessarily mean DEA inefficient. In fact, DEA efficient 
and DEA inefficient are only two extreme cases. For n  different DMUs, there is a total 
number of n  LP models to be solved. Accordingly, there are n  different sets of weights, 
which are the basis to calculate the cross-efficiency matrix [6]. 
 

 

 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ao
r.

co
m

 o
n 

20
25

-0
1-

05
 ]

 

                             3 / 15

http://ijaor.com/article-1-47-fa.html


52 H. Azizi, R. Jahed / IJAOR  Vol. 1, No. 1, 49-63,  Summer 2011  (Serial #1) 

2.2 DEA model for measuring the worst relative efficiencies of DMUs 
 
Efficiency is a relative measure and can be measured within different ranges. The CCR model 
measures the optimistic efficiency of each DMU by minimization within the range of greater 
than or equal to one. If the efficiency of a DMU is measured by maximization within the 
range of less than or equal to one, then we have the so-called pessimistic efficiency or the 
worst relative efficiency. The pessimistic efficiency of oDMU can be measured by the 
following pessimistic DEA model [7, 8]: 
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Which can be further transformed into the following equivalent LP model: 
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Efficiencies determined by the above LP model (4) are referred to as the worst relative 

efficiencies. Contrary to the CCR model (2) that determines an efficiency frontier for n  
DMUs, model (4) determines an inefficiency frontier for them. We refer to those DMUs lying 
on the inefficiency frontier to be DEA inefficient, while those not lying on the inefficiency 
frontier to be DEA non-inefficient. 

Since the best relative efficiencies measure the best performances of DMUs, while the 
worst relative efficiencies measure their worst performances, such two types of relative 
efficiencies usually lead to two distinctive assessment conclusions. Any assessment using 
only one type of efficiency is obviously not all-sided. Therefore, there is a clear need to 
combine both types of relative efficiencies and give an overall measurement and assessment 
of the performance of each DMU. 
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3 Bounded DEA models for measuring interval efficiencies of DMUs 
3.1 Review of existing work 
 
Since the worst and the best relative efficiencies are measured within different ranges, they 
are incomparable. Therefore, they cannot be directly used to form an efficiency interval for 
each DMU. In order to be able to generate an interval efficiency assessment for each DMU, 
Entani et al. [2] constructed the following upper and lower bounds mathematical 
programming model for oDMU : 
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Where the upper bound model was further transformed into the model below, which is 

equivalent to the standard model (3) and can be solved through model (4): 
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While the lower bound model was converted into the following model, which cannot be 

replaced with an equivalent LP problem: 
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By assuming that 1/

11
=∑∑ ==

s

r rjr
m

i iji yuxv  for each DEA inefficient unit (pessimistic 
inefficient DMU), Entani et al. [2] divided the above model (7) into the following A  sub-
optimization problems ( A… JJ ,,1 ) where A  is the number of pessimistic inefficient DMUs 
and A… JJ ,,1  are the DMUs which are pessimistic inefficient: 
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Which can be further simplified as the A  LP models below: 

 

 

m
L
oj i io

i 1
s

r ro
r 1

m s

i ij r rj
i 1 r 1

r i

M in v x

s.t. u y 1,

v x u y 0,

u , v 0, r 1, ,s, i 1, , m.

=

=

= =

θ =

=

− =

≥ = =

∑

∑

∑ ∑
… …

 (9) 

 
Let *L

ojθ  be the optimum objective function value of the above LP model (9). It is obvious 

that when oj = , L*
oj 1.θ =  So, the lower bound efficiency of oDMU  was finally determined 

by 
 L* L*

o ojj o
1 M in{ }

≠
θ = ∧ θ  (10) 

 
where a b min{a,b}.∧ = Accordingly, the efficiency interval for oDMU  is denoted as 

],[ ** U
o

L
o θθ , where *U

oθ  is the optimum objective function value of the upper bound model (6). 
Carefully analyzing models (7)-(9), the following drawbacks have been found: 

1. One important feature of measuring the best relative efficiencies of DMUs is to 
identify DEA efficient DMUs, which perform the best among all DMUs from the 
optimistic point of view, and to determine an efficiency frontier so that the decision 
maker or assessor knows which DMUs are DEA efficient and which DMUs are not. 
But models (7)-(9) fail to do so. They can identify only one DMU with the smallest 
lower bound efficiency and not all DEA efficient DMUs. Accordingly, they cannot 
determine the efficiency frontier. So, much information useful to the decision maker 
or assessor was lost. 

2. Models (8)-(9) use only one DMU, i.e. jDMU  as the reference set to compute the 
lower bound efficiency of oDMU . So, model (9) has only two constraint conditions, 
which leads to only one input and one output weights to be nonzero and all the other 
input and output weights to be zero. That is to say, only one input and one output data 
of oDMU  were effectively used and all the other input and output data were ignored 
when computing its lower bound efficiency. This is obviously unreasonable and 
unacceptable. 

Evidently, the model (5) cannot reasonably measure the best relative efficiencies of 
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DMUs and cannot determine the efficiency frontier. So, in what follows, we will develop a 
new DEA model with the constraint of the upper and lower bounds on efficiency. For 
convenience and simplicity, we refer to it as a bounded DEA model. The Bounded DEA 
model measures the performances of DMUs within the range of an interval and thus can 
effectively make the most of all the input and output data to measure both the best and the 
worst relative efficiencies of DMUs. 
 
 
3.2 Bounded DEA models for crisp data 
 
In order to reasonably measure the interval efficiencies of DMUs, we first introduce the 
concept of IDMU. 

Definition 1. An IDMU is a virtual DMU, which can use the least inputs to generate the 
most outputs. 

According to the above definition, we denote by min
ix  ( mi ,,1…= ) and max

ry  ( sr ,,1…= ) 
the inputs and outputs of the IDMU, respectively, where min

ix  is the minimum of the i-th input 
and max

ry  the maximum of the r-th output. They are determined by the following formulae: 
min
i ijj

max
r rjj

x M in{x }, i 1, , m,

y M ax{y }, r 1, ,s.

= =

= =

…

…
 

Since the IDMU utilizes the least inputs to produce the most outputs, its performance is 
without doubt the best among all the DMUs. So, its efficiency should be the smallest at any 
circumstance. 

Let *
IDMUϕ  be the worst relative efficiency of the IDMU. Then it can be determined by 

using the following fractional programming model [8]: 
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which can be solved through the following LP model: 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ao
r.

co
m

 o
n 

20
25

-0
1-

05
 ]

 

                             7 / 15

http://ijaor.com/article-1-47-fa.html


56 H. Azizi, R. Jahed / IJAOR  Vol. 1, No. 1, 49-63,  Summer 2011  (Serial #1) 

 

m
min

IDMU i i
i 1

m s

i ij r rj
i 1 r 1

s
max

r r
r 1

r i

M ax v x

s.t. v x u y 0, j 1, , n,

u y 1,

u , v , r 1, ,s, i 1, , m.

=

= =

=

ϕ =

− ≤ =

=

≥ ε = =

∑

∑ ∑

∑

…

… …

 (12) 

 
Where ε  is the non-Archimedean infinitesimal. After *

IDMUϕ  is determined, we know that 
the efficiencies of all the DMUs cannot be less than it. Therefore, we can measure the 
efficiencies of DMUs within the range of interval ]1,[ *

IDMUϕ . The following pair of fractional 
programming models reflects this idea [4]: 
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which can be equivalently transformed into the following pair of LP models: 
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Both models (13) and (14) are called bounded DEA models. Let *U

oφ  and *L
oφ  be the 

maximum and the minimum of the above objective function, respectively. Then, they form an 
efficiency interval, denoted by ],[ ** U

o
L
o φφ , which measures the worst and the best relative 

efficiencies of oDMU  and its efficiency range. Repeating the above solution process for each 
DMU, we can obtain both the worst and the best relative efficiencies of all the DMUs and 
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their efficiency intervals ],[ ** U
j

L
j φφ  ( nj ,,1…= ). 

About the interval efficiency, ],[ ** U
o

L
o φφ , we have the following definitions:  

Definition 2. oDMU  is said to be DEA inefficient if and only if 1* =U
oφ , otherwise it is 

said to be DEA non-inefficient. 
Definition 3. oDMU  is said to be DEA efficient if and only if **

IDMU
L
o ϕφ = , otherwise it 

is said to be DEA non-efficient. 
Definition 4. oDMU  is said to be DEA unspecified if and only if it is neither DEA 

efficient nor DEA inefficient. 
Definition 5. oDMU  is said to be DEA peculiar if and only if it is both DEA efficient 

and DEA inefficient. 
All the DEA efficient DMUs determine an efficient production frontier, while all the 

DEA inefficient DMUs together define an inefficient production frontier called the 
inefficiency frontier. For those DEA unspecified units, they are always enveloped by both the 
efficiency and the inefficiency frontiers. Note that some DMU(s) may be both DEA 
inefficient and DEA efficient. Such DMUs have the widest efficiency interval ]1,[ *

IDMUϕ . 
Their evaluations in fact contain the biggest uncertainty [8]. 

 
 

3.3 Bounded DEA models with preference information on weights 
 
Traditional DEA approach often uses so-called assurance region approach or cone-ratio 
method to restrict factor weights ru ( sr ,,1…= ) and/or iv ( mi ,,1…= ). As a matter of fact, 
these two approaches are also applicable to the bounded DEA models (13) and (14). Here we 
consider how to incorporate the decision maker or the assessor’s preference information on 
input and output weights into the bounded DEA models [4]. 

Since ru  ( sr ,,1…= ) and iv  ( mi ,,1…= ) are factor weights with different dimensions, 
they are usually incomparable. To take into account the decision maker or the assessor’s 
preference information, we first carry out scale transformation to eliminate the dimension for 
each output and input factor. 

Let 
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y
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rj …… ====  (15) 

 .,,1;,,1,
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x
x

x
x

x
i

ij

ij
j

ij
ij …… ====  (16) 

The scale-transformed input and output data are of no dimensions and are all within the 
range of [0,  1] . Since DEA model has the property of unit-invariance, the use of scale 
transformation to input and output data does not change the efficiencies of DMUs. Therefore, 
we have 
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where ru~  ( sr ,,1…= ) and iv~  ( mi ,,1…= ) are the factor weights corresponding to the scale-
transformed output and input data. They have no dimensions and are thus comparable. They 
can be utilized to express the decision maker or assessor’s preference on outputs and inputs. 
According to the relative importance between outputs and inputs, the decision maker or 
assessor may provide various types of preference information on outputs and inputs such as 
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from which we know that 
 ,,,1,~ max sryuu rrr …==  (19) 
 .,,1,~ max mixvv iii …==  (20) 

These are two very important formulae, which show that the factor weights ru  
( sr ,,1…= ) and iv  ( mi ,,1…= ) multiplied by the maxima of output and input data can be 
used to express the decision maker or the assessor’s preference. For example, the decision 
maker preference information mentioned above can be equivalently expressed as 

 
maxmax
2211 rrrr yuyu ≥ , maxmax

2211 iiii xvxv ≥ , maxmax
4433 rrrr yuyu = , maxmax

4433 iiii xvxv = , 

βα ≤≤ maxmax
6655 rrrr yuyu , δγ ≤≤ maxmax

6655 iiii xvxv . 
 

Such preference information on factor weights can be easily incorporated into the 
bounded DEA models. 

Let 
 },,)({ maxmaxmaxmaxmaxmax

665544332211
βα ≤≤=≥== rrrrrrrrrrrrr yuyuyuyuyuyuuuU  (21) 

 },,)({ maxmaxmaxmaxmaxmax
665544332211

δγ ≤≤=≥== iiiiiiiiiiiii xvxvxvxvxvxvvvV  (22) 
 

Then the bounded DEA models with the preference information on weights can be 
expressed as follows: 
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m

o i io
i 1

m s

i ij r rj
i 1 r 1
m s

*
i ij r IDMU rj

i 1 r 1
s

r ro
r 1

r

i

r i

Max / Min v x

s.t.      v x u y 0,    j 1, , n,

         v x u ( y ) 0,     j 1,..., n,

          u y 1,

         (u )  ,
          (v )  ,
           u , v ,   

=

= =

= =

=

φ =

− ≤ =

− ϕ ≥ =

=

∈
∈
≥ ε

∑

∑ ∑

∑ ∑

∑

…

U

V

r 1, ,s,   i 1, ,m.= =… …

 (23) 

where 

 

m
min

IDMU i i
i 1

m s

i ij r rj
i 1 r 1
s

max
r r

r 1

r

i

r i

Max v x

s.t.       v x u y 0,    j 1, , n,

           u y 1,

            (u ) ,
            (v )  ,
             u , v ,    r 1, ,s,    i 1, ,m.

=

= =

=

ϕ =

− ≤ =

=

∈
∈
≥ ε = =

∑

∑ ∑

∑

…

… …

U

V

 (24) 

 
 
4 A numerical example 
 
We now examine a numerical example using the bounded DEA model to illustrate its 
application in real-world performance measurement. 

Consider a performance-measurement problem with ten DMUs, each DMU with one 
input and two outputs. The data set is taken from Entani et al. [2] and shown in Table 1, 
where all inputs are normalized to one for simplicity. 

 
Table 1  Data for 10 DMUs with one input and two outputs 
 

DMU Input Output 1 Output 2 
A 1 1 8 
B 1 2 3 
C 1 2 6 
D 1 3 3 
E 1 3 7 
F 1 4 2 
G 1 4 5 
H 1 5 2 
I 1 6 2 
J 1 7 1 

IDMU 1 7 8 
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The best and the worst relative efficiencies of each DMU are calculated by using models 
(2) and (4), respectively, and the results are recorded in the second and third columns of Table 
2. The non-Archimedean infinitesimal is set to be 1010−=ε . 
 
Table 2  Interval efficiencies and relative efficiencies of the 10 DMUs 
 

DMU Optimistic  
efficiency 

Pessimistic  
efficiency 

Interval efficiency 

Bounded DEA models Entani et al.’s DEA 
models 

A 1.0000 1.0000 [0.3478, 1.0000] [0.1250, 1.0000] 
B 1.9167 1.0000 [0.6666, 1.0000] [0.3333, 1.0000] 
C 1.2143 0.8125 [0.4223, 0.8125] [0.1667, 0.8125] 
D 1.5333 0.8889 [0.5333, 0.8889] [0.3333, 0.8889] 
E 1.0000 0.5909 [0.3478, 0.5909] [0.1429, 0.5909] 
F 1.4375 1.0000 [0.5000, 1.0000] [0.2500, 1.0000] 
G 1.0455 0.5714 [0.3636, 0.5714] [0.2000, 0.5714] 
H 1.2105 0.9091 [0.4210, 0.9091] [0.2000, 0.9091] 
I 1.0455 0.8333 [0.3636, 0.8333] [0.1667, 0.8333] 
J 1.0000 1.0000 [0.3478, 1.0000] [0.1429, 1.0000] 

 
From the angle of the best relative efficiency, ADMU , EDMU  and JDMU  are all 

evaluated to be DEA efficient. They together determine an efficiency frontier, which is shown 
in Fig.1. Their performances are usually thought to be better than any other DMUs that are 
evaluated to be DEA non-efficient. The performances of those DEA non-efficient DMUs are 
rated to be GIHCFDB DMUDMUDMUDMUDMUDMUDMU ~;;;;; , where the 
symbol ‘~’ means ‘be indifferent to’, while the symbol ‘; ’ represents ‘performs worse than’. 

However, when the DMUs are evaluated from the viewpoint of the worst relative 
efficiencies, ADMU , BDMU , FDMU  and JDMU  are all evaluated to be DEA inefficient. 
They together define an inefficiency frontier, which is also shown in Fig.1. Their 
performances are usually thought to be worse than any other DMUs that are evaluated to be 
DEA non-inefficient. The performances of those DEA non-inefficient DMUs are rated to be 

GECIDH DMUDMUDMUDMUDMUDMU ;;;;; . 
The above assessments are based on different points of view and may therefore be 

different. For example, for ADMU  and JDMU , when they are evaluated from the optimistic 
point of view, they are evaluated to be optimistic efficient, which means they perform better 
than any other DMUs. However, when they are evaluated from the pessimistic point of view, 
they are both evaluated to be pessimistic inefficient, which means they perform worse than 
any other DMUs. Such two assessment results are obviously in conflict with each other. Any 
assessment conclusion considering only one point of view is apparently one-sided, unrealistic, 
and unconvincing. 

In order to give an overall assessment of each DMU from both the optimistic and 
pessimistic points of view, Entani et al. [2] used model (5) developed by themselves to 
measure the interval efficiency of each DMU. The results are reported in the fourth column of 
Table 2, from which can be seen very clearly that their model only successfully identified one 
DEA efficient DMU, i.e. ADMU , which has the smallest lower bound efficiency, but failed to 
identify the other two DEA efficient DMUs. So, the efficient production frontier cannot be 
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determined by their approach. 
Since there are four DMUs, i.e. ADMU , BDMU , FDMU , and JDMU  that are identified 

to be DEA inefficient, in order to determine the lower bound efficiencies of DMUs, four LP 
models need to be solved for each DMU. Take ADMU  for example. In order to calculate its 
lower bound efficiency, the following four LP models need to be solved: 

 
L*
AA 1

1 2

1 1 2

1 2 1

(LP1) : Min v
u 8u 1,

s.t. v (u 8u ) 0,
u ,u , v 0.

θ =

+ =
 − + =
 ≥

 

L*
AB 1

1 2

1 1 2

1 2 1

(LP2) : Min v
u 8u 1,

s.t. v (2u 3u ) 0,
u ,u , v 0.

θ =

+ =
 − + =
 ≥

 

L*
AF 1

1 2

1 1 2

1 2 1

(LP3) : Min v
u 8u 1,

s.t. v (4u 2u ) 0,
u ,u , v 0.

θ =

+ =
 − + =
 ≥

 

L*
AJ 1

1 2

1 1 2

1 2 1

(LP4) : Min v
u 8u 1,

s.t. v (7u u ) 0,
u ,u , v 0.

θ =

+ =
 − + =
 ≥

 

 
Each of the above four LP models keeps only one of four DEA inefficient DMUs 

continuing to be DEA inefficient. The solutions to the above four LP models are as follows: 
 

,1,0,1,1 *
1

*
2

*
1

* ==== vuuL
AAθ  

,8/3,8/1,0,8/3 *
1

*
2

*
1

* ==== vuuL
ABθ  

,4/1,8/1,0,4/1 *
1

*
2

*
1

* ==== vuuL
AFθ  

.8/1,8/1,0,8/1 *
1

*
2

*
1

* ==== vuuL
AJθ  

So, the final lower bound efficiency of ADMU  is determined by 
1250.0}8/1,4/1,8/3,1min{* ==L

Aθ  
From the above four sets of input and output weights, it can be seen that only one output 

(either output 1 or output 2) is effectively used in the computation of lower bound efficiency. 
Special attention has been paid to the second set of factor weights, i.e. 

8/3,8/1,0 *
1

*
2

*
1 === vuu , from which we have the following efficiencies for HDMU , 

HDMU , IDMU , and JDMU : 
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3,2/3 ==== JIHF θθθθ  
They are all greater than one. Such results obviously contradict the assumption that 

1}/{max
11

=∑∑ ==

s

r rjr
m

i ijij
yuxv . So, Entani et al.’s [2] solution approach is in fact defective. 

As a contrast, we now utilize the bounded DEA model (14) developed in this paper to 
reevaluate the problem. To do so, we first define the IDMU, which is shown in the last row of 
Table 1. Its worst relative efficiency is found to be 3478.0* =IDMUϕ  by running model (12). 
Running model (14) for each DMU, we get the interval efficiencies of ten DMUs, which are 
presented in the last column of Table 2, from which it can be seen very clearly that bounded 
DEA model not only identify the four DEA inefficient DMUs correctly, but also identify the 
three DEA efficient DMUs fully. The identified DEA efficient DMUs are ADMU , EDMU  
and JDMU . ADMU , BDMU , FDMU  and JDMU  are the four identified DEA inefficient 
DMUs. Such assessment results are fully consistent with the results obtained by using the 
traditional CCR model (2) and the worst relative efficiency model (4). 

 

 
Fig. 1  Efficient and inefficient frontiers for the example 

 
Although ADMU , BDMU , FDMU  and JDMU  are all evaluated to be DEA inefficient, 

due to the differences in their lower bound efficiencies, their performances are in fact not the 
same. Through comparing their lower bound efficiencies, we find that 

JAFB DMUDMUDMUDMU ~;; . As such, ADMU , EDMU  and JDMU  are all rated to 
be DEA efficient, due to the differences in their upper bound efficiencies, their performances 
are not the same either. Through comparing their upper bound efficiencies, we may arrive at 
the conclusion that EJA DMUDMUDMU ;~ . The remaining five DMUs belong to DEA 
unspecified units. They are all enveloped by the efficient and inefficient production frontiers. 
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In this example, both ADMU  and JDMU  are evaluated to be DEA inefficient and DEA 
efficient. This phenomenon shows that the two different production frontiers simultaneously 
pass through these two specific DMUs (see Fig.1). Usually, DEA efficient units perform well, 
but this does not mean each DEA efficient unit to be the best. As such, DEA inefficient units 
usually perform poor, but not every DEA inefficient unit performs the worst. So, when a 
DMU is both DEA efficient and DEA inefficient, it is likely to mean that the DMU is neither 
the best nor the worst. 
 
 
5 Conclusions 
 
Performances of DMUs can be evaluated from different perspectives. Accordingly, the results 
of such evaluations are often confusing and even contradictory. It is therefore an undeniable 
necessity to integrate different measures in order to obtain an overall assessment of the 
performance of each DMU. In this paper, we presented bounded DEA models for 
measurement of the overall performance of DMUs. It was shown that bounded DEA models 
have significant advantages over current methods for evaluation of DMUs. 

Compared with Entani et al.’s [2] model, the bounded DEA model developed in this 
paper has some attractive advantages. First of all, it can identify DEA efficient and inefficient 
DMUs correctly and fully. DEA efficient DMUs form an efficiency frontier, while DEA 
inefficient DMUs define an inefficiency frontier. All the DEA unspecified DMUs are 
enveloped by both frontiers. Next, bounded DEA models can make the most of all input and 
output data in the process of calculating both the upper and lower bound efficiencies of each 
DMU. So, both the upper and lower bound efficiencies are reasonably determined. Last but 
not least, the bounded DEA model only needs to solve )12( +n  LP problems. One is solved to 
determine the worst relative efficiency of the IDMU. The other n2  LP problems are solved to 
compute the upper and lower bounds efficiencies of n  DMUs, respectively. The 
computational burden is substantially reduced. 
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