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Abstract  Manufacturers, who re-supply a large number of customers, continually struggle with the 
question of how to formulate a replenishment strategy. The purpose of this paper is to determine the 
optimal set of routes for a group of vehicles in the transportation network under defined constraints –
which is known as the Vehicle Routing Problem (VRP) – delivering new items, and resolving the 
inventory control decision problem simultaneously since the regular VRP does not. Both the vehicle 
routing decision for delivery and the inventory control decision affect each other and must be 
considered together. Hence, a mathematical model of vehicle routing problem with inventory is 
proposed whose demands are assumed to be hybrid variables (HVRPI) in which fuzziness and 
randomness are considered together. Then, the problem is transformed into its equivalent deterministic 
form and presented as a multi-objective mixed integer nonlinear programming. Since finding the 
optimal solution(s) for HVRPI is a NP-hard, a solution algorithm is presented composed of the 
constrained Nelder–Mead method and a Tabu search algorithm for the vehicle routing to solve the 
complex problem. The usefulness of the model is validated by experimental results. The findings 
indicate that the proposed model can provide a practical tool to significantly reduce the logistic cost. 
 
Keywords Vehicle Routing Problem, Hybrid Variable, Nelder–Mead Method, Tabu Search. 
 
 
1 Introduction 
 
A key issue in logistics is the cost-efficient management of a heterogeneous vehicle fleet 
providing delivery service to a given set of customers with known demands. The 
collection/distribution system manager should not only decide on the number and types of 
vehicles to be used, but also he/she must specify which customers are serviced by which 
vehicle and what sequence to follow so as to minimize the transportation cost. Products to be 
delivered are loaded at the depot. Then, every vehicle route must start and finish at the 
assigned terminal, and both vehicle capacity and demands are to be satisfied. Moreover, each 
customer must be serviced by exactly one vehicle since split demand is not allowed. This 
class of logistic problems is usually known as the vehicle routing problem (VRP), and its 
objective is usually the minimization of the overall distance traveled by the vehicles while 
servicing all the customers. The interest in VRP problems comes from its practical relevance 
as well as from the considerable difficulty to solve them precisely. In the field of 
combinatorial optimization, the VRP is regarded as one of the most challenging problems. It 
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is indeed NP-hard, so that the task of finding the best set of vehicle tours by solving 
optimization models is computationally prohibitive for real-world applications. This problem 
was first introduced by Dantzig and Ramser [1], and was developed by Clarke and Wright [2]. 
In the past, the resolution of the vehicle routing problem was based on the minimal 
transportation cost criterion without considering the inventory cost. However, when only one 
factor is accessed and minimized in the logistic system, the costs of other factors are increased 
[3]. For example, if the vehicle routing decision problem is considered, and the inventory 
control decision problem is neglected, the vehicle routing decision for delivery can be 
effectively made, and however, the inventory control decision cannot, causing manufacturers 
not be able to reduce the total logistic cost effectively. In contrast, if only the inventory 
control decision problem is considered and the vehicle routing decision problem is ignored, 
the transportation cost would increase since the vehicle routing decision cannot be effectively 
made. Hence, the total logistic cost (transportation cost and inventory cost) would increase. 
So the vehicle routing problem and the inventory control decision problem need to be 
considered simultaneously so that the total logistic cost can be minimized. 

There are uncertain factors in VRP, such as demands of consumers, travel times between 
consumers, number of vehicles, and consumers to be visited [4]. Stochastic vehicle routing 
problems (SVRP) arise whenever some elements of the problem are random. Common 
examples are stochastic demands and stochastic travel times. Sometimes, the set of customers 
to be visited is not known with certainty. In such cases, each customer has a probability of 
being presented. To the best of our knowledge, Tillman [5] was the first to propose an 
algorithm for the SVRP in which there were several depots, and the algorithm proposed by 
Tillman was based on Clarke and Wright [2]. A second major article is due to Stewart and 
Golden [6]. It contained extensions and generalizations of previous results of Golden and Yee 
[7]. A chance constrained programming model (CCP) and two expected value models (EVM) 
were presented. After that, many researchers, such as Bodin et al. [8], Warters [4] studied 
various types of SVRP. 

But, in some systems, it is hard to describe the parameters of the problem as random 
variables because there are not enough data to analyze. For instance, in one problem, 
customers’ demands are often not precise enough, especially for the urban traffic. Generally, 
it can use fuzzy variables to deal with these uncertain parameters, which are first presented by 
Teodorović and Pavkovićkm [9] in VRP, and Lai et al. [10] modeled VRP by fuzzy 
programming with possibility measure. In a recent paper proposed by Zheng and Liu [11], a 
vehicle routing problem with time windows was solved by the concept of CCP, in which 
demands were regarded as fuzzy variables. On the other hand, fuzzy set theory now has also 
made an entry into the inventory control systems. Sommer [12] applied the fuzzy concept to 
an inventory and production-scheduling problem. Park [13] examined the EOQ formula in the 
fuzzy set theoretic perspective associating the fuzziness with the cost data. Das et al. [14], 
Roy and Maiti [15] solved a single objective fuzzy EOQ model using Geometric 
Programming technique. De and Goswami [16] derived a replenishment policy for items with 
finite production rate and fuzzy deterioration rate represented by a triangular fuzzy number 
using extension principle. However, a blend of several types of information is encountered in 
realistic models to furnish an excellent depiction of the phenomenon which leads to the 
concept of hybridization. This means that randomness and impreciseness can be combined 
simultaneously to represent the real world as it is perceived. Such combinations may be 
represented by hybrid numbers, random fuzzy numbers, fuzzy random numbers, expectation 
of fuzzy sets, possibility of random variables, and several others. These novel concepts will 
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be described in view of applications in human sciences but such tools can be also used in 
every scientific research such as operations research, etc. Again a parameter may have 
different fuzzy values in nature with some non-fuzzy probabilities. These parameters are 
called fuzzy random parameters. For example, a company may have different securities, 
share, etc. and by selling these they may raise their capital for budget investment to buy new 
products which are to be supplied. Since the share market is probabilistic, the amount of 
money extracted from the market is random. The amount may be ‘‘around $10 million with 
probability 0.3’’, ‘‘about $15 million with probability 0.5’’, etc. By fuzzy random 
programming we mean the optimization theory in fuzzy random environments. In the case of 
VRP, He and Xu [17] proposed a class of random fuzzy VRP, and Malekly et al. [18] 
presented a new fuzzy random model (FRCVRP) for dairy industry. On the other side, there 
are also rarely-discussed papers in the case of fuzzy random inventory problem [19, 20]. To 
the best of our knowledge, in VRP with inventory no attempt has been made where fuzziness 
and randomness coexist. Therefore, there is a strong motivation for further research in the 
area. So, in this paper the aim is to provide a new formulation for a capacitated VRP with 
inventory and hybrid demands (HVRPI) which is a common problem in practice. 
 
 
2 Fuzzy number 
 
The theory of fuzzy sets introduced by Zadeh [21] was developed to describe vagueness and 
ambiguity in the real world systems. Zadeh defined a fuzzy set ã in a universe of discourse X 
as a class of objects with a continuum of grades of memberships. Such a set is characterized 
by a membership function ã (x) which associates with each point x in X a real number in the 
interval [0,1]. ã (x) represents the grade of membership of x in ã. 

A fuzzy set ã in the universe of discourse  (set of real numbers) is called a fuzzy 
number if it satisfies the following conditions: 
(i) ã is normal i.e. there exists at least one x such that ã (x)  1. 
(ii) ã is convex. 
(iii) the membership function ã (x), x is at least piecewise continuous. 
 
 
2.1 Triangular fuzzy number 
 
Triangular fuzzy number (TFN) (ã) is the fuzzy number with the membership function ã (x), 
a continuous mapping: ã (x)  [0,1], where 
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2.2 -cut of a fuzzy number 
 
A -cut of a fuzzy number ã is defined as a crisp set  
aη={x: ã (x) ≥ η, x} where [0,1]. 
 
 
2.3 Approximate value of triangular fuzzy number (TFN) 
 
According to Kaufmann and Gupta [22], the approximated value of TFN ã  aaa is 
given by â = ¼ (a + 2a + a). 
 
 
2.4 Algebraic operation of fuzzy numbers 
 
Addition:  

Let ã  aaa and b  (b1, b2, b3) be two triangular fuzzy numbers. Using max-min 
convolution on fuzzy numbers ã and b the membership function of the resulting fuzzy number 
ã (+ b can be obtained as z=x+y (ã (x)  b (y)), x, y, z  where the symbols '' and '' 
are used for minimum and maximum, respectively. In short we can write ã (+) b = (a1,a2,a3) 
(+) (b1,b2,b3).  
 
Scalar multiplication: For any real constant t, 
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2.5 Fuzzy possibility techniques 
 
Let ã and b be two fuzzy quantities with membership functions ã (x) and b (y), respectively. 
Then according to Dubois and Prade [23], Liu and Iwamura [24, 25].  

 
pos(ãb) = sup{min(ã (x), b (y)): x,y , xy} 

 
where the abbreviation 'pos' represents possibility and  is any of the relations < , > , = , ≤ , ≥ . 
 

If ã and b are two fuzzy numbers defined on  and ũ = f (ã, b where f: ×→  is a 
binary operation then the membership function ũ of ũ is defined as ũ (u) = sup{min(ã (x), 
b (y)): x,y  and u = f(x,y), u }. 
 
 
3  Random variable 
 
Let L (=(m,σ2 be a continuous random variable with probability density function (pdf) fL(l) 
whose mean and variance are m and σ2, respectively. Similarly, let L (=(m, σ2 be another 
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random variable with pdf  fL(l). If L and L are two independent random variables, then we 
have the following algebraic operations: 
Addition: 

).,(),(])[,(][ 2
2

2
121

2
22

2
1121   mmmmLL  

 
here, according to sum-product convolution L (=L+L) is a random variable with the same 
type of pdf fL(l) = (∫ f(l-l)f(l)dl with mean m (= m+m and variance  σ2 (= σ2+σ2). 
 
Scalar multiplication: 
tL = (tm, t2σ2). Here tL and L have the same type of pdf.  
 
 
4 Hybrid number [22] 
 
Assume Ã(=(Ã, L)) is a hybrid number. Here the couple (Ã,L) represents the addition to a 
fuzzy number with a random variable without altering the characteristic of each one and 
without decreasing the amount of available information where Ã is a fuzzy number and L is 
the random variable with density function fL(l). Let Ã(=(Ã, L)) and Ã(=(Ã, L)) be two hybrid 
numbers in  where fL(l) and fL(l) are the pdfs of L and L, respectively. So a hybrid 
convolution for addition will be defined as (Ã, L)  (Ã, L) = (Ã(+ Ã, L [+]L) = (Ã, L), 
where (+ represents the max-min convolution for addition of fuzzy subsets and [+] represents 
the sum-product convolution for addition of random variables. We denote the couple (Ã, L) 
by the symbol Ã(+L. 
So,  

zyxyxz AAyxzAA ,,)),()(()(
2121

~~~)(~   and 22221 )()()( dllfllflf    or 

11211 )()( dlllflf  . 
 
Note 1. A fuzzy number is a special case of a hybrid number if Ã = (Ã,0), where 0 is the 
trivial random variable with the following probabilities:  
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Note 2. A random variable is also a special case of a hybrid number if L = (0, L), where 0 is 
the trivial fuzzy number with membership function 
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Note 3. 0 = (0,0) is the neutral for addition of hybrid numbers. 
If 1

~u  is a fuzzy cost, u2 is a random cost and 3u is a fixed cost then the total cost can be 
expressed as  
 

.),)(~())(,~(),0(][),0(][)0,~(][][~
231321321321 uuuuuuuuuuuu   (2) 

 
we can consider the fixed number like a sum of two parts 333 uuu  and write for (2) 
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       .)][,][~(][][~
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The mathematical expectation of a hybrid number is defined as follows. 
A function ϕ(x in  that is nonnegative and monotonically increasing is: 
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for a closed interval of , ],[ 21
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if l is the value of the random variable L, the lower and upper bounds of (6) depend only on l 
for a given level α. The mathematical expectation for each bound is now computed: 
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Theorem The membership function of the mathematical expectation of a hybrid number (Ã, 
L) is the membership of Ã shifted by the mathematical expectation of L [22]. 
 
Proof. Using the intervals of confidence of level α: 
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Hence, in a hybrid sum, if the random variables satisfy their random expectation, they will 
have the same effect as ordinary numbers, shifting the sum of fuzzy numbers. 
Using the notation (Ã,L) = Ã(+L, where Ã is a triangular fuzzy number, the following 
example is illustrated. 
 
Example Let )2.1,6())(9,5,3(~
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5 Problem statement 
 
The problem considered can be stated as follows. There are k vehicles of the same capacity 
under an EOQ model inventory system delivering some goods from a warehouse to a set of 
customer nodes N = {1, 2, ..., n} in a complete directed graph with arc set Λ. Λ {(i, j: i, j 
N, ij} Euclidean distance is an arc set which assumed that the underlying distance matrix is 
symmetric and satisfies the triangle inequalities. At the beginning of the planning horizon, 
customer iN supplied with a delivery quantity, and this process lasts to the end of the period. 
Each customer iN is characterized by a demand known in advance, and may not be satisfied 
in an infinite time horizon which means shortage assumption is permitted. Considering the 
differentiations in customers’ time periods, the delivery process continues while total 
demands fulfill. Similar planning will be projected for the next periods; therefore, restarting 
each period, there is a routing policy with known delivery quantities. Also it is considered that 
a limited amount of inventory can be stored at the customer sites as well as the warehouse 
from which it is delivered; however, transfers between sites are not allowed [26]. The vehicle 
working time is made of a set of heterogeneous routes K where each route starts and ends at 
the warehouse. We assume, without loss of generality, that the routes are served in the order 
1, 2, ..., k. The warehouse is denoted by 0; the symbol N + is used for N  0 and Λ+ for Λ {(i, 
j): i, j N+, ij}. The goal is to determine inventory policies and routing strategy such that the 
long-run costs are minimized to serve all customers while satisfying the capacity constraints. 
This problem is prevailing for some fields of food distribution systems –e.g. distributing flour 
to bakeries. 

In the development of the model, we make use of the notation shown in Table 1. 
 
Table 1 List of notations 
 

Notation Meaning 
Parameters 

Di    hybrid demand of customer iN 
Qveh    capacity of each vehicle 
Qspace capacity of warehouse 
wi     storage space per unit of product to customer iN 
c1i     holding cost of delivering per unit of product to customer iN 
c2i shortage cost per unit of product to customer iN 
c3i setup cost per unit of product to customer iN 
c4i production cost per unit of product to customer iN 
dij    travel distance from customer iN to customer jN 
ρ cost value of travel distance 

Decision variables 
xijr   1 if arc (i, j)Λ+ is part of a vehicle route rK; 0 otherwise 
υi    load on a vehicle immediately before making a delivery to customer iN 
Si shortage level of supply to customer iN 
Qi    amount delivered to customer iN 

 
 
5.1 Model development 
 
Let the amount of stock for the ith customer (iN) be Ri at time t = 0. In the interval (0, Ti (= 
t1i + t2i)), the inventory level gradually decreases to meet demands. By this process the 
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inventory level reaches zero level at time t1i and then shortages are allowed to occur in the 
interval (t1i, Ti). The cycle then repeats itself (Fig. 1). 
 

 
Fig. 1 Inventory level of ith customer 
 
The differential equation for the instantaneous inventory qi(t) at time t in (0, Ti) is given by 
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with the initial conditions qi(0) = Ri(= Qi − Si), qi(Ti) = −Si , qi (t1i) = 0. 

For each period a fixed amount of shortage is allowed, and there is a penalty cost c2i per 
items of unsatisfied demand per unit time. From the above differential equation, 
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Model 1 
2 2
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The objective function (9) includes both inventory costs of each customer and 
transportation costs. Constraints (10)–(13) represent the routing aspect of the problem. 
Constraint (10) requires that only one vehicle can leave from retailer i once. Constraint (11) 
denotes that only one vehicle can arrive at retailer j once. Constraint (12) states that for each 
retailer ℓ, the entering vehicle must eventually leave this node. Constraint (13) designates that 
each vehicle can leave the supplier once at most. Constraint (14) is a vehicle capacity 
constraint and constraint (15) is the available storage area. 

Constraints (16) keeps track of the load on the vehicles and guarantees, if customer i is 
the immediate predecessor of customer j on a route, then the load on the vehicle before 
visiting customer j must be less than or equal to the load just before visiting customer i minus 
the amount delivered, which is represented by the variable Qi. Because the load on each 
vehicle is monotonically decreasing as customers are visited, (16) provides the added benefit 
of eliminating sub-tours. 

Constraint (17) designates xijr as a 0–1 integer variable. After all deliveries are made, the 
fleet returns to the warehouse empty so y0 can be set to 0. To conclude the formulation, 
variables are defined in (18)–(20).  
 
 
5.2 Model extension 
 
Considering the imperfect nature of the demands, the model is to convert into a deterministic 
version. Then by definition of Di = (D1i,D2i,D3i)(+)(μi,σi

2) for iN, and following the 
mathematical theory of hybrid numbers as described earlier the objective function (9) and 
constraints (16) of Model 1 extend to  
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Model 2 
Min TC=ETC(+) (0,VTC)  (21) 
 s.t.   

 (1 ) 0ii j i ijrE y y Q D x    

 
KrNjNi   ,, , (22) 

   )1(~
ijriiji xDQyyV , KrNjNi   ,,  (23) 

(10)–(15) and (17)–(20)   

where E(∙) and V(∙) are mean and variance operators, respectively, and δ is the preset tolerable 
variance level of the hybrid demand delivered to customers. On the other hand, 

),,(~
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so the approximated value of CTE ~ is 
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321 iiii DDDD  . 

 
hence Model 2 is reduced to a multiobjective mixed integer nonlinear programming problem 
as follows: 
 
Model 3 

 Min AETC,VTC  (24) 
s.t.   

)1)(ˆ( ijriiiij xDQyy   , KrNjNi   ,,  (25) 
  22 )1( ijri x , KrNjNi   ,,  (26) 

(10)–(15) and (17)–(20)   

where  
 


Kr ji

ijrij xdCTEAETC
),(

ˆ  , and 
 









Ni i

i
iii Q

ccVTC 2

2
2
3

22
4

 . 

 
 
6 Solution algorithm 
 
The proposed mixed integer nonlinear programming model is very difficult to solve. Thus, we 
decompose the decision variables {Qi, Si, xijr} into two groups: {Qi, Si} and {xijr}. The first 
group is associated with an inventory problem and the second group is subject to a VRP. 
With the concept of decomposition, Model 3 can be rearranged as follows:  

 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ao
r.

co
m

 o
n 

20
26

-0
1-

30
 ]

 

                            10 / 19

http://ijaor.com/article-1-105-en.html


A Vehicle Routing Problem with Inventory in … 75 

Upper level: 

1
ˆMin VRPz ETC z   

(27) 
2

2 2 2
2 4 3 2Min i

i i i
i N i

z c c
Q





 
  

 
  

s.t. 
  1, ΩSQ ii   

 
where Ω1 is the feasible region represented by nonnegative constraints (19) and (20) and zVRP 
is calculated as follows: 

 
Lower level: 

( , )

Min VRP ij ijr
r K i j

z d x
 

    (28) 

s.t.  
2}{ Ωxijr   

 
where Ω2 is the feasible region represented by constraints (10)–(15), (17), (25) and (26) with 
{Qi , Si} given. If a given {Qi , Si} causes problem (28) to be in feasible, simply let zVRP equal 
infinity. 

Model 3 is now converted into a multiobjective nonlinear programming model (27) with 
nonnegative constraints and a VRP in the objective function. Model (27) can be solved using 
either a sensitivity-analysis based or a direct search algorithm. The former uses sensitivity 
analysis to obtain the derivative information of the reaction function (either explicitly or 
implicitly) while the latter employs only functional evaluations. Since the interdependence 
between delivery quantity and shortage variables {Qi , Si} and vehicle routes {xijr} are too 
complicated and the derivative information is not available in this problem, we adopted a 
direct search algorithm to solve the problem. One of the most widely used direct search 
methods for solving nonlinear unconstrained optimization problems is the Nelder–Mead 
simplex algorithm [27]. 

In the next two subsections, the Nelder–Mead method with boundary constraints is 
adopted to solve the inventory problem (27) and a heuristic is proposed to solve the VRP (28). 
 
 
6.1 Solving the multiobjective inventory problem  
 
A ‘‘simplex’’ is a geometrical figure consisting, in n-dimensions, of (n+1) points y0; . . . ; yn 

[27]. If any point of a simplex is taken as the origin, the n other points define vector directions 
that span the n-dimension vector space.  

If we randomly draw as initial starting point y0, then we generate the other n points yi 
according to the relation yi = y0 + λy0Ii, where the Ii are n unit vectors, and λ is a turbulence 
factor which is which is typically equal to one (but may be adapted to the problem 
characteristics). 

Through a sequence of elementary geometric transformations (reflection, contraction, 
expansion and multi-contraction; internal/external), the initial simplex y0 moves, expands or 
contracts. To select the appropriate transformation, the method only uses the values of the 
function to be optimized at the vertices of the simplex considered. After each transformation, 
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the current worst vertex is replaced by a better one. Trial moves shown on Fig. 2 are 
generated according to the following basic operations (where ŷ called center of gravity and 
defined by ŷ= (Σi yi)/n, and α, β, γ are constants): 
 

reflection: yr = ŷ + α (ŷ - yn) 
expansion:  ye = ŷ + β (yr- ŷ) 
internal contraction: yc = ŷ + γ (yn – ŷ)   
external contraction: ýc = ŷ + γ (yr – ŷ) 
 
At the beginning of the algorithm, one moves only the point of the simplex, where the 

objective function is worst (this point is called ‘‘high’’), and one generates another point 
image of the worst point. This operation is the reflection. If the reflected point is better than 
all other points, the method expands the simplex in this direction; otherwise, if it is at least 
better than the worst one, the algorithm performs again the reflection with the new worst 
point. The contraction step is performed when the worst point is at least as good as the 
reflected point, in such a way that the simplex adapts itself to the function landscape and 
finally surrounds the optimum. If the worst point is better than the contracted point, the multi-
contraction is performed. For each rejected contraction step, we replace all yi of the simplex 
by ½(yi+y1) (yl is the vertex of the simplex where the objective function is ‘‘low’’); thus we 
obtain the multi-contraction (internal/external) of the simplex, and the process restarts.  
 
 

 
 

Fig. 2 Available moves in the Nelder–Mead simplex method, in the case of 3 variables 
 
The stopping criterion is a measure of how far the simplex was moved from one iteration v to 
the following one (v +  1). The algorithm stops when: 
 

,1
1

21 



n

i

v
i

v
i yy

n
 (29) 
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where yv+ 1 is the vertex replacing yv at the iteration (v  + 1), and ε is a given ‘‘small’’ positive 
real number. 

Because the Nelder–Mead method is originally applied to an unconstrained problem, an 
adjustment is necessary that projects its coordinates on the bounds if the new point is out of 
the domain. However, since the inventory part of the problem is of multiobjective form, it 
also needs a preparation step before the adjustment. 

We start the preparation with a topic of normalized normal constraint method (NNCM; 
[28]. This method normalizes the design space and introduces new constraints. Considering 
the new constraints, optimization of only one of the objectives returns a non-dominated 
solution. When several of these single-objective optimization problems are solved, several 
non-dominated solutions are obtained. The difference between this method and varying user 
preferences in a non-generating method is that here the set of constraints are introduced to 
spread the final solutions uniformly in the criterion space. NNCM is an algorithm for 
generating a set of evenly spaced solutions on a Pareto frontier [28]. This method yields 
Pareto optimal solutions, and its performance is independent of the scale of the objective 
functions. NNCM method and some related definitions are presented in this section. 
 
Definition 1. (utopia point) Considering a multiobjective optimization problem, a point ₣o ω 
in the criterion space (ω) is called a utopia point if and only if:    
 

  iyyff i
o

i  )(min  (30) 
 
where ζ n is the feasible region in the design space. Because of contradicting objectives, 
the utopia point is unattainable. 
 
Definition 2. (anchor point) A non-dominated point ₣o ω is an anchor point if and only if it 
is Pareto optimal and at least for one i, fi** = min y { fi (y)| y ζ}. 
 

The first step in NNCM is to normalize the design space. For this purpose, the utopia and 
the anchor points are required. These points are found by optimizing only one of the 
objectives at a time. After finding these points, the criterion space is normalized using the 
following transformation. 
 

o
ii

o
ii

i ff
fff



 max  (31) 

 *max );(max Yyyff ii   (32) 
 
where Y* is All Pareto optimal points in the design space. 
 

The normalization process locates the utopia point at the origin and the anchor points at 
the unit coordinates. Fig. 3a shows the original criterion space and the Pareto frontier of a 
generic bi-objective problem. Fig. 3b represents the Pareto frontier of the same problem after 
normalization. The next step is to form the utopia hyperplane, which is a hyperplane with 
vertices located at the anchor points. For a bi-objective problem, the utopia hyperplane is a 
line as shown in Fig. 3c. Next, a grid of evenly distributed points on the utopia hyperplane is 
generated. The number of points in this grid is defined by the user. Fig. 3c shows, for 
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example, a grid of six points on the utopia line. If these points are projected onto the Pareto 
frontier, several Pareto optimum solutions are obtained. To find the Pareto optimum solution 
corresponding to each point in this grid, a single-objective optimization problem must be 
solved. This problem entails minimizing one of the normalized objectives with an additional 
inequality constraint. For example, the Pareto optimum solution corresponding to point P in 
Fig. 3c can be found by minimizing ƒˉ2 while the feasible region is cut by the line passing 
through this point and perpendicular to the utopia line. The feasible region of this single-
objective optimization problem is shown in Fig. 3c. The solution of this problem, ƒˉ*, is a 
Pareto optimum solution for the original multiobjective problem. Other Pareto optimal points 
can be found by repeating the same procedure for other points on the utopia line. 

 
Fig. 3 a A typical bi-criterion space, b normalized criterion space, c a normal constraint introduced by NNCM 

and the feasible region of the resulted single-objective problem (min ƒˉ2). 
 

If the objective functions have local optima, it is possible to have some dominated 
solutions among the final solutions. Model 3 has local optima; therefore, dominated solutions 
are expected.  

In order to find each Pareto optimum solution, NNCM requires solving a single-objective 
optimization problem. Since this algorithm is proposed for solving Model 3, in which the 
gradients of the objectives are not available; a direct optimization method is required. On the 
other hand, considering the time consuming analysis of the model, an evolutionary algorithm 
may not be a good choice due to the low rate of convergence. Hence, integrating with Nelder–
Mead simplex algorithm would be an appropriate choice we implement here. We now 
proceed to formally state the solution algorithm, as follows: 

 
Step 1: Initialization  

Step1.1: Find an initial solution {Qi, Si} (designated as y0) of (27) as follows, 
and solve corresponding vehicle routing problem (28) considering NNCM. 

The initial delivery quantity Qi is usually set as the mean value of the 
stochastic demand quantity with the initial shortage value (Si) of zero.  
Calculate the value of objective function (27).  

Step 1.2: Determine other vertices y1, ..., yn of the initial simplex by disturbing y0 
as follows:  yi = y0 + λ y0Ii    i = 1 ... n where λ is a turbulence factor and Ii is a 
unit base vector. Project its coordinates on the bounds, if yi is out of the domain. 
Solve the corresponding vehicle routing problem (28) and calculate the value of 
objective function (27), respectively.  

Step 2: Identify the vertices with the highest function value as yh, the vertices with 
the lowest function value as yl, the vertices with the second lowest function value 
as ŷ, the center of gravity of the simplex (without yl), and the corresponding 
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objective function values as z(yh), z(yl), z(ŷ); where z is the combined objective 
functions z1, z2 calculated by NNCM.  
Step 3: Apply a reflection with respect to yl: yr = ŷ+   (ŷ − yl) 

Project its coordinates on the bounds, if yr is out of the domain.  
Step 4: Update the simplex. We distinguish between three cases: 

(a) If z(yr) > z(yh), it means that the reflection created a better solution. We 
attempt to get an even better point through expansion of yr: 

ye = ŷ + β(yr− ŷ). Project its coordinates on the bounds, if necessary. Replace yl 
with ye if z(ye) > z(yr); otherwise, replace yl with yr. 

(b) If z(yr) ≥ z(ŷ), replace yl with yr.  
(c) If z(yr) ≤ z(yl), it was probably wrong to do the reflection along that 
direction. 

 An internal contraction from yl in direction ŷ − yl will be applied: 
yc = ŷ + γ (yl− ŷ), project its coordinates on the bounds, if necessary. Or else, if 
z(yl) < z(yr) < z(ŷ), the selected direction may be right. However, since all 
vertices except yl are better than yr, it can be concluded to go closer to the 
simplex again. An external contraction from yr will be applied: 
ýc = ŷ + γ (yr− ŷ), project its coordinates on the bounds, if necessary. After the 
internal or external contraction, if z(yc) > z(yl) (or if z(ýc) > z(yl)), replace yl with 
yc (or ýc). Otherwise, a total contraction is performed since all attempts to get 
improvement failed. 
 yi = yh +  γ (yi − yh) i ≠h 

Step 5: Check convergence. If the distance between yh and any other vertices is 
smaller than a certain tolerance, then stop; yh and its corresponding vehicle route is 
the best solution. Otherwise, go to Step2. Another choice of stopping criterion 
which is more applicable, according to (29), is the difference of z(yh)-z(yl) less 
than a preset tolerance.  

 
 
6.2 Solving the VRP  
 
A review of the VRP literature reveals that the problem has been studied extensively. A 
number of exact and approximate algorithms exist. While exact algorithms can only solve 
relatively small-size problems, several heuristic algorithms have proved very successful. Tabu 
search (TS) is declared to be the best meta-heuristic for the VRP by Cordeau et al. [29] and 
Laporte et al. [30]. This global optimization meta-heuristic was initially proposed by Glover 
[31]. The basic idea of this method is exploring the solution space by moving at each iteration 
from the current solution s to the best solution in its neighborhood N(s). Since the current 
solution may deteriorate during the search, anti-cycling rules must be implemented. In our 
implementation, we use a Tabu search method to solve VRP. The solution algorithm is used 
as follows: 
 
Step 1: Input data 

Input the amount delivered and shortage level of supply to customer {Qi, Si} 
calculated from the inventory problem. 
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Step 2: Initial solution 
In order to generate an initial solution for our TS, we make use of the Nearest 
Neighborhood method where customers are placed in an array sorted in the non-
decreasing order of a distance. In this method, the customer with the lowest 
distance is appended to a route. When the next to-be-inserted customer’s demand 
exceeds the vehicle capacity on the current route, a new route is initiated. 

Step 3: Neighborhood structure 
Our neighborhood structure is a neighborhood heuristic that is based on exchanging 
one node (customer) between a given set of initial vehicle routes. These exchanges 
are called 1-exchange. The 1-exchange scheme involves shifting a node from one 
route to another and swapping two nodes between two given routes. A conventional 
tabu list is created to prevent a customer that has been moved to return to its 
original route. Whenever one node is moved from a route to another one at iteration 
v, it may not be reinserted into previous route until iteration v+v׳, where v׳ is 
randomly selected on in some interval [θ,θ']. In our implementation, we used θ =5 
and θ' =10. This Tabu tenure mechanism was first suggested by Gendreau et al. 
[32] and virtually eliminates the probability of cycling. As is common in Tabu 
search, the algorithm uses an aspiration criterion that overrides the Tabu status of a 
node whenever moving it results in a new best value. Tabu search terminates when 
any one of two stopping criteria is satisfied. The first criterion is the total number of 
iterations performed. The second criterion is the maximum permissible number of 
iterations during which the best feasible does not improve – the one which we used 
in this paper. 

 
 
7 Computational result 
 
All computations were performed on a 2.53 GHz processor with 512 MB of RAM. The 
optimization models and the Tabu search were coded with MATLAB 7. For testing purposes, 
we used the three data sets containing 10 instances of 5, 6, 7, 8, 9, 10, 15, 20, 50 and 100 
customer problems and holding costs, shortage cost, setup cost, production cost, storage 
space, respectively, c1i = 2, c2i = 1, c3i = 30 and wi = 1  for all iN, and since the first term 
(relating to c4i) in (9) is constant as that is independent of decision variables, therefore at 
present the term can be omitted from the analysis.  

These instances were randomly generated on a 100 × 100 Euclidean grid. For each 
customer, demand value lie within [0,100]. Capacity of each vehicle Qveh = 50, capacity of 
warehouse Qspace = 200, cost value of travel distance ρ = 0.1.  

On the other side, according to the original Nelder–Mead method, the coefficients in the 
simplex iteration should satisfy α > 0, β > 1 and 0 < γ <1. The standard, nearly universal, 
choices for these values are α = 1, β = 2 and γ = ½. We also use these values in this paper. 

To show the efficiency, we also compare the resulted solution with mathematical 
software LINGO 8.0. Since (27) is a multiobjective problem which its objective functions has 
conflict, we used LP-metric approach to compare the result with our proposed algorithm. In 
short, we solved (27) regarding to each objective function separately and reformulated it, aim 
to minimize the summation of normalized difference between each objective and its optimal 
values.  
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As the complexity of this Problem is NP-hard, only small problems can be solved. The 
test results are summarized in Table 2. In each case, LINGO 8.0 returns a local optimal 
solution. 
 
 
Table 2 Comparisons between proposed algorithm and LINGO for different problem sizes 
 

Number of 
customers 

Objective Value  CPU time (Sec)  Gap of 
Objective 
value (%) Proposed 

algorithm LINGO    Proposed 
algorithm LINGO   

5 286.34 301.66  0 4560  5.07 
6 396.26 445.85  0 5898  11.12 
7 502.80 673.01  1 4244  25.29 
8 592.39 696.27  1 6774  14.91 
9 711.08 856.22  4 4552  16.95 
10 834.89 971.75  9 5667  14.08 
15 1229.23 -  28 -  - 
20 1433.67 -  122 -  - 
50 4825.34 -  864 -  - 
100 8777.91 -  71378 -  - 

 
Table 2 shows that the solutions of proposed algorithm are better than the local optimal 

solutions found by LINGO 8.0 in all cases. The CPU times of the proposed algorithm are less 
than 10 s in the cases which have 5 to 10 customers. However, LINGO 8.0 takes hours to find 
a local optimal solution in those cases. Also the proposed algorithm solutions are 14.56% 
better, on average, than the LINGO 8.0 solutions.  

From the above test results, we found that the proposed algorithm can solve this problem 
efficiently and returns a reliable solution. The efficiency of the algorithm makes it suitable for 
solving a real case, which is normally large scale. 

 
 

8 Conclusion 
 

In this paper, we have successfully developed a multi-objective mixed integer nonlinear 
programming model and proposed an effective and efficient heuristic method (in which 
demands are considered as hybrid numbers, i.e. mixture of both fuzzy and random numbers of 
normal density functions) for the vehicle routing problem with inventory (HVRPI). The 
proposed heuristic method is better than LP-metric approach, based on the minimal 
transportation cost criterion in terms of average logistic cost. Other contribution and some 
conclusions are summarized as follows: 

The HVRPI is tactically decomposed into two mutually dependent “simpler” sub-
problems and each sub-problem can be readily solved by some existing algorithms. Even with 
a small number of customers, solving the HVRPI by means of optimization software may take 
a long time. Apparently such optimization software is not suitable for solving HVRPI. 
However, the proposed algorithm in this paper is much more efficient and effective in solving 
HVRPI.  

Due to the limitations of this paper, some factors such as multiple products, time 
windows, etc. are not considered. So considering these factors would help the vehicle routing 
and inventory decision made more realistically. 
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The Tabu search (TS) algorithm described in this paper utilized only short term memory. 
Although it provided substantial improvement in solution quality, it may be possible to further 
improve performance by implementing longer term memory of TS. Incorporating long term 
strategies into TS is crucial to fully utilizing its capabilities. We leave long term 
implementation for future work. 
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