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Abstract We propose a dynamic program to find the shortest path in a network having gamma
probability distributions as arc lengths. Two operators of sum and comparison need to be adapted for
the proposed dynamic program. Convolution approach is used to sum two gamma probability
distributions being employed in the dynamic program.
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1 Introduction

Deterministic, time-dependent shortest path problems have been widely studied for the case of
determining a single shortest path. If the arc lengths are constant, there are several efficient
algorithms developed by [1,2,3]. Cook and Halsey [4] extended Bellman’s principle of
optimality for dynamic programming (1958) to this case and Dreyfus (1969) suggested the
use of Dijkstra’s algorithm (1959) for determining time-dependent shortest paths. Halpern [5]
noted the limitations of the approach of Dreyfus (1969). It should be noted that the standard
shortest path algorithms also have been found to be applicable to compute shortest paths in
time-dependent but not stochastic networks [6, 7, 8, 9].

Kaufman ef al., [10] subsequently studied the assumptions under which the existing time-
dependent shortest path problems algorithms would work, and showed that if the link-delays
follow the first-in-first-out (FIFO) rule or consistency assumption, then one could use an
expanded static network to obtain optimal paths. Malandraki [11] analyzed the time-
dependent shortest path problem and extended Halpern’s result for the special case of
differentiable link delay functions and showed that the consistency assumption would be
satisfied by verifying that the first derivative of the link delay function did not exceed
negative unity.

Ziliaskopoulos and Mahmassani [12] noted that turning movements of vehicles in
congested urban networks contribute significantly to the travel time. The authors prescribed
an efficient label-correcting procedure that uses an extended forward-star structure to
represent the network including intersection movements and movement prohibitions. Chen
and Tang [13] analyzed a shortest path problem on a mixed-schedule network, subject to side
constraints. Haquari and Dejax [14] analyzed a similar problem, considering time-varying
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costs and knapsack-like constraints. However, due to failure, maintenance or other reasons,
different kinds of uncertainties are frequently encountered in practice, and must be taken into
account. For example, the lengths of the arcs are assumed to represent transportation time or
cost rather than the geographical distances, as time or cost fluctuate with traffic or weather
conditions, payload and so on, it is not practical to consider each arc as a deterministic value.
In these cases, probability theory has been used to attack randomness, and many researchers
have done lots of work on stochastic shortest path problem.

When arc lengths are random variables, the problem will become more difficult. Frank
[15] computed the probability that the time of the shortest path of the network is smaller than
a specific value where link travel times are random variables but not time dependent. Loui
[16], Mirchandani and Soroush [17], and Murthy and Sarkar [18] showed that for identifying
the expected shortest path if the random link travel times are replaced by their expected
values, then the problem simply reduces to a deterministic shortest path problem and standard
shortest path algorithms still can be used to find the expected shortest paths in a network.
Wijerante et al. [19] presented a method to find the set of non-dominated paths from the
source node to the sink node, in which each arc includes several criteria that some of them
might be stochastic. Carraway et al. [20] applied the method of generalized dynamic
programming to find the optimal path of a bicriteria network. Hall [21] studies for the first
time the time-dependent version of the shortest path problem. He demonstrated that the
standard shortest path algorithm may fail to find the expected shortest path in these networks.
Hall proposed an optimal dynamic programming based algorithm to find the shortest paths
and this algorithm was demonstrated on a small transit network example. He showed that the
optimal ‘‘route choice’’ is not a simple path but an adaptive decision rule. The best route from
any given node to the final destination depends on the arrival time at that node. The paper
only considers the case where link travel times are modeled as discrete-time stochastic
processes.

Fu [22] studied the expected shortest paths in dynamic and stochastic networks in a
traffic network where the link travel times are modeled as a continuous-time stochastic
process. He showed that the replacement of the probability distribution for link delays by their
expected values would yield sub-optimal results and prescribed a dynamic programming
algorithm to solve the problem using conditional probability theory. Kaufman and Smith [10]
subsequently showed that the time-space network formulation and expected link delays could
be used to solve the problem if the consistency assumption is satisfied. Fan et al. [23]
minimize expected travel time from any origin to a specific destination in a congestible
network with correlated link costs. Bertsimas and Van Ryzin [24] introduced and analyzed a
model for stochastic and dynamic vehicle routing, in which a single, uncapacitated vehicle
traveling at a constant velocity in a Euclidean region must serve demands whose time of
arrival, location and on-site service are stochastic. [25] extended this analysis and considered
the problem of m identical vehicles with unlimited capacity.

Miller et al. [26] prescribed an efficient label correcting algorithm to obtain Pareto
optimal paths by discretizing the probability distribution of the link delays. Psaraftis and
Tsitsiklis [27] examined shortest path problems, in which arc costs are the known functions of
certain environmental variables at network nodes, and each of these variables evolves
according to an independent Markov process. The vehicle can wait at a node in anticipation of
more favorable arc costs. They showed that the optimal policy essentially classifies the state
of the environmental variable at a node into two categories: green states for which the optimal
action is to immediately traverse the arc, and red states for which the optimal action is to wait.
Then they extended these concepts for the entire network by developing a dynamic
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programming, which solves the corresponding problem. Ji [28] studied the shortest path
problem with stochastic arc length. According to different decision criteria and presented
three types of models, In order to solve these models, a hybrid intelligent algorithm
integrating stochastic simulation and genetic algorithm has been developed.

2 Problem definition

Consider a network as shown in Figure 1 consisting of a finite set of nodes and arcs of the
directed acyclic network. We assume that the admissible paths are always continuous and
always move toward the right, and the length of each arc is a gamma random variable. We
want to find the shortest path from the source node 1 to the sink node N using the backward
dynamic programming approach.

Gampia(4,4)

Fig. 1 A network with same rate parameter gamma distribution

The optimal value function §; can be defined by
S, = the distribution of the shortest path from node i to node N.
Then the recurrence relation can be stated as

S, =minld, +S, | For i=N-1,...1 (1)

J>i

and the boundary condition is S, =0.

In this paper we use convolution to find distribution of sum of two gamma distributions
in each stage. And for comparison in each stage we find the probability that a random variable
with first distribution become smaller than another random variable with second distribution.

In order to show the operation in each stage, we first represent the convolution and
comparison between two gamma distributions with same rate parameter, and then we show
the convolution and comparison between two gamma distributions with different rate
parameter.

Definition 1. Let X and Y be two continuous random variables with density functions f{x) and
g(y), respectively. Assume that both f(x) and g(y) are defined for all real numbers. Then the
convolution f *g of fand g is the function given by
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f +9) (2) = f F() gz — %) dx
=f fz-=y)gly)dy

Theorem 1. Let X and Y be two independent random variables with density functions fx(x)
and fy(y) defined for all x. Then the sum Z = X +Y is a random variable with density function
fAz), where f7 is the convolution of fy and fy .

£, @ = [ fuy G,z —x) dx @)
= f_ fx,Y (z —y'}’) dy

Proof. as we knew the joint density function of independent variables is equal to the products
of their density functions therefore to find density function of Z = X +Y we apply cumulative
distribution function technique.

+o0

P(Z<z)=PX+Y<2z2)= fP(X+YSZ|X=x) fx (%)

—00

= fP(x+ySZ) fx(x) dx = f Fy(z—x) fx(x) dx

Now, we set partial derivative to obtain the summation density function

i, p +o0
fz (2) = FdZ(Z) = dz f Fy(z—x) fy(x)dx
+ood 3 _ +o0
= f%ﬂ fx(x)dx = ffY(Z_x) fx (x)dx

2.1 Sum of two independent gamma random variables with same rate parameter

Suppose that we have two random variables X and Y with a gamma density function with
parameter A>0 and a>(. We represent the density function of Z = X +Y as follows

L

— a;—-1,-Ax >
fx (x) F(al)x 17%e x>0,
A%2 N
fr )= r(0{2)}""2‘16‘ Y y =0.
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L@ = | fe-0 6 dx

z

f A% 1,-A(z—x) A 1,-1

= zZ—x)%27 e MZ7X) —  _xU@1~lo™MX dyx

) Ty @7 M)

_ A%t @2 a1+ a,—1,-1z

- I'(a+ az) z™ ©e (3)

As a result, if X;, Xo,..., X, are independent gamma random variables with (a;,A), (02,A),...,

(an,)) then ¥ =", follows gamma distribution with A and o =) ¢, .

i=1 i=1

la1+~--+an

fy(J/) = m xa1+--.+an_1 e—/lx (4)

2.2 Sum of independent gamma random variables with different rate parameter

Suppose that we have two random variables X;, X,..., X, with a gamma density function with

parameter (o,A1), (02,A2),..., (0n,An). We represent the density function of Y :ZX,. as

i=1

follows
@) =2C J/“1+"'+“”_1f01---fole_yc’“""’ln(“l""'“n—” Bayoay Uy oy Up—)dUy o dtlyy g %)
For all x>0 and fy,(y) = 0 for all x < 0, where
AT AR
C = ey (6)
and
and
By Wty e Un1) 3= g T w70 (1 — gy ™ (®)

For all uy, ...,u,,_, € [0,1].
See (Akkuchi, 2005).

Now we illustrate the method that we use to find minimum between two gamma random
variables. In order to find the minimum random variable we compute the probability that the
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first random variable X; with gamma density function with (a;,A;) became smaller than the
second random variable X, with gamma density function with (0;,A2).

P(X, < X,) = f POy < X,lXy = x1) . o (xy) diy

A4
ar=lo=lpxy 1y ar-1p=MiX1 g x dx
-f -fx1 r(052) T(a) ™ 20

3 A numerical example

Consider the network depicted in Figure 1. We want to obtain the shortest path from node 1 to
node 6 where arcs have gamma distribution with same rate parameter.

Boundary condition is S¢= 0.

Using the recurrence relation (1) we have

S¢ = Gamma(4,4), S, = Gamma(5,4)

For each arc that doesn’t exist in network we replace infinity for d;; in relation (1).

S. = min [Gamma(7 4) + 54] . [Gamma(7,4) + Gamma(5,4)
s =

Gamma(1,4) + Ss Gamma(1,4) + Gamma(4,4)
. [Gamma(lz 4)]
- mn Gamma(5,4)

We find the minimum value between two density function as follows

P(X, < X,) = f POy < X,lXy = x1) . o (xy) dy

Aaz 1 A Aal 1 A
az— —Axz ar=lpo=4%1 4 d =
f f Tay) 2 ¢ “T(ay ™ ¢ 0%

45 412
— - —4x; . 11,-4 _
—fo . 4'x ‘e "2.11!x1 e "1 dx,dx; =0.038

With probability 0.038 the first density function is smaller than the second, so we choose the
second density function as minimum.

S3 = Gamma(5,4)

We illustrate the operation of node 2 as follows
S, = min [Gamma(z 4) + 54] o [Gamma(2,4) + Gamma(5,4)

z- Gamma(6,4) + S Gamma(6,4) + Gamma(4,4)
Gamma(7,4) ]

= min [Gamma(lo 4)
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and too finding minimum value we have

P(X, < X,) = f POy < XlXy = x1) . fo (xy) diy

f.f A% P 1,-2
PRCIET- A x 17 te ™1 d x, dx; =
X1 r(052) T(a) ™ 20

f ©410 47 50643
0

?x de %2 .axl%““‘l dx,dx; = ———=0.772

with probability 0.772 the first density function is smaller than the second, so we choose the
first density function as minimum.

S, = Gamma(7,4)

Now we do operations for S; to find the shortest path in network
S = mi [Gamma(l 4) + 52] . [Gamma(1,4) + Gamma(7,4)
L= M camma(2,4) + S, Gamma(2,4) + Gamma(5,4)
o [Gamma(8 4)]
- mn Gamma(7,4)

Ma<xg=f

0

f LA 1 dx,d 1019 _ 3952
— Xy e =X e X X =U.
X, 6! 7! 2% = 43096

Gamma(8,4)] _

n [Gamma(7,4)] = Gamma(7,4)

With probability 0.3952 the first density function is smaller than the second, so we choose the
second density function as minimum. Now the shortest path in network with probability
0.6048 is 1-3-5-6.

Now we explain operations to find the shortest path in network with gamma arcs in general
case.

Fig. 2 A network with gamma distribution arc length


http://ijaor.com/article-1-208-en.html

[ Downloaded from ijaor.com on 2026-01-30 ]

62 M. H. Olya, H. Fazlollahtabar, I. Mahdavi / ITAOR Vol. 2, No. 4, 55-66, Winter 2013 (Serial #7)

Boundary condition is S¢= 0
Using the recurrence relation (1) we have

S¢ = Gamma(3,5), S, = Gamma(2,1)
For each arc that doesn’t exist in network we replace infinity for d;; in relation (1).

Gamma(2,7) + 54] . [Gamma(2,7) + Gamma(2,1)

S; = min Gamma(3,3) + Ss Gamma(3,3) + Gamma(3,5)

From formula (5) we have

X, = Gamma(2,7),X, = Gamma(2,1)

ST' = X1 +X2
¥t 24+1-1y 1 -1)° 24+0-1y 1
— 72 ,=7x 0 1
H)=77e ( o (21 A E a0y
D" j2+1-1 7" , D% 240-1y 7
2 ,—x 0 1
thhe (m < et (T ) @y
— 49 _7x<2 N x)+ _x<—98+49x)
—* 8367 e T 36
Convolution of gamma(3,3) and gamma(3,5) is as follows
33
— 2,—-3x >
fx (x) (3_1)!36 e x>0,
3
= 2,5y >
fr &) G-’ ¢ y=0,
+o0
L@ = [ fe-0 6
£ 2,
— 2 _ a—1,-2,(z—x) 1 a1—-1,-A1x
= zZ—Xx)%2"e™"2 X e dx
Of AR ey
VA
53 33
— — )2 ,-5(z—x) 2p-3x
f(?)—l)!(z x)“e (3_1)!xe x
0
_—10125 10125 . 3375 __ . 10125 +10125 1y
T 16 ¢ %716 °© 16 ¢ %7716 ¢ 16 €
+3375 a3y o -0
T VZ 2

We find the minimum value between two density function as follows
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0]

P(X,<X,) = fo fxoofxz(xz) o fr, (1) dxpdx; = fooofxl(xl) (fxoofxz(xz)dxz> dx,

_f°° 40 _7x1<2 +x1)+ . <—98+49x1) f°°—1o125 o, 10125
B R VT A I ET (x1 16 °© 2716 ¢

3375 ., 10125 _ 10125 ___
T ¢ M TTqe ¢ etTqg e

3375 200557
e 3%2x,2 dx,) dx; = = 0.3627

16 552960

With probability 0.3627 the first density function is smaller than the second, so we choose the
second density function as minimum.

Gamma(2,7) + Gamma(2,1)

Gamma(3,3) + Gamma(3,5)] = Gamma(3,3) + Gamma(3,5)

Ss =min[

We explain operations of node 2 as follows

S = mi [Gamma(1,6) +S4] o [Gamma(1,6) + Gamma(2,1)
2 = M Camma(3,2) + Ss) Gamma(3,2) + Gamma(3,5)

Convolution of gamma (1,6) and gamma(2,1) is as follows

1

fx ) = EXOE_GX x>0,
2

1
fr @) = ﬁ}’le—y y=>0,
L@ = [ fe-0 6 dx

Z
6 6 6
— —6X _ 1,—-(z—x) — _p~Z,_ __ ,—Z -6z >
f6e (z—x)"e dx c€ iz e +253 ,2=0
0

and the convolution of gamma(3,2) and gamma(3,5) is as follows

23

fx ) = Exze—Zx x>0,
53

fr ) = yte™ y=0,

L@ = [ fe-0 6 dx

23 53
= f;xze‘zx 57 (7= x)2e 5% dx
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—500 1000 2000 500 1000
— -5z.,2 __ -5z, __ -5z -2Z.,2 __ -2z
27 T A T 27 ¢ F Ty et
+ 2000 P z>0
81 =

We find the minimum value between two density function as follows

P(X,<X,) = fooo fxoofxz(xz) o fr, (1) dxpdx; = fooofxl(xl) (fxoofxz(xz)dxz> dx,

_ f‘” (—5006_5x1x , 1000 . = 2000 . 0500 . ., 1000 ..
o \ 27 Y b8l 27 27 !
+zoooe_2x1) U‘” 6 e O O ey )dx _ 10902337
81 x5 225 25 27 T 20699712
= 0.5267

With probability 0.5267 the first density function is smaller than the second, so we choose the
first density function as minimum.

Gamma(1,6) + Gamma(2,1)

Gamma(3,2) + Gamma(3,5)] = Gamma(1,6) + Gamma(2,1)

S, =min[

Now we do operations for S; to find the shortest path in network

Gamma(1,4) + 52]

S = min [Gamma(1,7) + S,

. [Gamma(1,4) + Gamma(1,6) + Gamma(2,1)
= MM Gamma(1,7) + Gamma(3,3) + Gamma(3,5)

To obtain convolution of gamma (1,4), gamma (1,6) and gamma (2,1) we convolute gamma
(1,4) with density function that obtained from convoluting gamma (1,6) and gamma (2,1).

L@ = [ fe-0 6

Z
6 6 6
= —4(z-x) [ Z =Xy _ ___ ,—x 4 ___ ,—6X
f4e (53 X 253 +253 )dx
0

4
= %(25322 + 30ze% — 16e°? — 9)e %7

To obtain convolution of gamma (1,7), gamma (3,3) and gamma (3,5) we do same as above.

L@ = | fe-0 6 dx
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z
::J‘76_7&_x)<__1o125€_5xx__10125 L3375 o, 10125
0

16 16 ° 16 16
10125 3375 2) ;
16 e 16 e X X

—23625
= W(—l + 32ze?? + 32e%% + 16e?%%z% + 28ze*? — 31e** — 8e*?z%)e~7?

We find the minimum value between two density function as follows

P(X;<X,) = fooo fxmfxz(xz) . fr, (1) dxpdx; = fooofxl(xl) (fxoofxz(xz)dxz> dxy

“ 4
= f <% (25e%*1 + 30x,e%%1 — 16e°*1
0

© _23625

- 9)9‘6"1) <f W(—l + 32x,e2%2 + 32e%*2 + 16e%*2x,2
X

' 103463451397

= 281295286272 _ 03678

+ 28x,e%*2 — 312 — 8x2)e‘7x2dx2> dx,

Considering the probability of 0.3678, the first density function is smaller than the second
one, so we choose the second density function as minimum. Now the shortest path in the
network is 1-3-5-6 with probability of 0.6322.

4 Conclusions

This paper proposed a dynamic program for determining the shortest path in a gamma
probability distribution arc length network. Since the definite values of the dynamic program
were turned into gamma random variables, two modifications were performed on sum and
comparison operators. The convolution technique was employed for summing two gamma
probability distributions. The numerical example via a six node network showed the
performance of the proposed methodology for the shortest path. The examples were reported
in two cases with the same rate parameter and different one, respectively.
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