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Abstract  In this paper, we investigate the fuzzy logic based system characteristics of MX/G/1 retrial 
queuing system with Bernoulli vacation schedule. The service time and vacation time are assumed to 
be generally distributed. It is found in many practical situations that the queuing models with fuzzy 
parameters are much more realistic than the classical crisp parameters based queuing models. We have 
chosen group arrival rate, service rate and vacation rate to be fuzzy parameters. The objective of this 
study in this paper is to transform MX/G/1 retrial fuzzy queue with Bernoulli vacation schedule to a 
family of conventional crisp queues by employing -cut approach based on Zadeh’s extension 
principle. We formulate a pair of parametric non-linear programs (PNLPs) to describe the family of 
crisp queues with a vacationing server. To illustrate the validity of the proposed approach, the 
numerical examples are facilitated for different service time and vacation time distributions.  
 
Keywords Retrial Queue, Batch Arrival, Bernoulli Vacation, Fuzzy Sets, Queue Length. 
 
 
1 Introduction 
 
Retrial queuing systems are characterized by the requirement of the customers who on finding 
the service area busy must join the retrial group and retry for service after a random interval 
of time. Queuing systems with retrial customers are quite common in many real world 
congestion situations, including web access, call centers, telephone switch systems, digital 
cellular mobile networks and computer networks, etc. Krishna Kumar and Arivudainambi [1] 
gave the analysis of a single server queue with Bernoulli vacation schedules and general 
retrial times. The detailed analysis of a retrial queuing model with optional phase type server 
vacations based on exhaustive deterministic service and a single vacation policy was done by 
Madan and Al-Rub [2]. Wenhui [3] considered the M/G/1 retrial queue with Bernoulli 
vacation and generic retrial, vacation, setup and service times. They have established the 
ergodic condition and obtained the probability generating function of the system size. 
Sherman and Kharoufeh [4] analyzed M/M/1 retrial queue with unreliable server whose 
normal and retrial queues have infinite storage capacity. An MX/G/1 queuing system with two 
phases of heterogeneous service and Bernoulli vacation schedule which operate under 
classical retrial policy has been discussed by Choudhury [5]. This model generalizes both the 
classical M/G/1 retrial policy with arrivals in batches and a two phase batch arrival queue 
with single vacation under Bernoulli vacation schedule. Further in [6], he extended the same 
model to operate under the linear retrial policy. Recently, a batch arrival retrial queue with 
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general retrial times, where the server is subject to starting failures and provides two phases of 
heterogeneous services to all customers under Bernoulli vacation schedules was investigated 
by Ke and Chang [7]. Moreover, Boualem et al. [8] have derived several stochastic 
comparison properties in the sense of strong stochastic ordering and convex ordering for an 
M/G/1 retrial queue with vacations. 

While looking towards traditional queuing theory, we find that the inter-arrival times, 
service times and vacation times are required to follow certain probability distributions with 
fixed parameters. However, in many practical situations, the arrival pattern of the customers, 
the service pattern and vacation pattern of the server are typically described by linguistic 
values such as fast, slow or moderate rather than with complete probability distributions. Thus 
by considering some system parameters as fuzzy numbers, the queuing models so developed 
have wider range of applications in the real life. The literature of fuzzy queues is not much 
rich; although significant works have been done on fuzzy queues in the recent past. The works 
on fuzzy queues includes the analysis and design of membership functions for the system 
characteristics for some well known queuing models such as queues with batch arrival (cf. 
Chen [9]), retrial queues (cf. Ke et al.[10]), bulk service queues (cf. Chen [11]), unreliable 
server queues (cf. Ke and Lin [12]), queues with vacation (cf. Ke et al. [13]), finite-capacity 
queues (cf. Chen [14]) and their combinations and many others. It is worthwhile to mention 
some notable works on fuzzy queues in different frameworks. Li and Lee [15] proposed a 
general approach for queuing systems in a fuzzy environment based on Zadeh’s extension 
principle. However, their approach is complicated and creates difficulty for applying in fuzzy 
queues with server vacation. Negi and Lee [16] proposed the -cut and two-variable 
simulation approaches to solve some fuzzy queues; but their approaches have failed to 
describe the membership functions of various performance measures of these queues. Kao et 
al. [17] applied -cut approach to reduce a fuzzy queue into a family of crisp queues.  

Chen [11] was able to conserve the fuzziness of input information when some 
information of bulk service queuing systems is ambiguous. Further in [9], he developed a 
non-linear programming approach to derive the membership functions of the steady-state 
performance measures in bulk arrival queuing systems with varying batch sizes, wherein the 
arrival rate and service rate are fuzzy numbers. The membership functions of the system 
characteristics of a batch arrival queuing model with vacation policies were constructed by Ke 
et al. [13]. They suggested that by extending the classical queuing models with server 
vacation to the fuzzy environment, more information in the form of analytic results are 
provided which can then be easily implemented by the system designers and practitioners in 
real time situations. Further, in [10], Ke et al. constructed the membership functions of the 
system characteristics of a retrial queuing model with fuzzy arrival, retrial and service rates. 
They have facilitated a numerical example to validate the proposed approach. Lin and Ke [18] 
have developed parametric non-linear programs to convert a crisp controllable queuing model 
to the respective fuzzy model in which cost elements, arrival rate and service rate are all fuzzy 
numbers. Ritha and Robert [19] applied fuzzy set theory to estimate the uncertainty associated 
with the input parameters of M/M/1/1 retrial queue. They have used -cut approach and fuzzy 
arithmetic operations to derive the system characteristics. Recently, Ritha and Menon [20] 
have proposed a procedure to construct a membership function of the performance measures 
of a queue with removable and reliable server. They have chosen arrival rate and service rate 
in the fuzzy environment. 

In the present paper, we investigate the system characteristics of batch arrival retrial 
queuing system with Bernoulli vacation schedule by assuming the arrival, service and 
vacation rates as fuzzy numbers. The rest of the paper is organized as follows. In section 2, 
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we formulate the model by stating the suitable assumptions. The fuzzy membership functions 
based on Zadeh’s extension principle are described in section 3. Section 4 facilitates the 
numerical examples to explore the validity of analytical model to the real world congestion 
situations. Finally, in section 5, the paper is wind up with the conclusion and highlighting the 
scopes of the work done for future aspirants.  
 
 
2 Problem Formulations 
 
Consider an MX/G/1queueing system wherein the single server follows Bernoulli vacation 
schedule. In this queuing system, the customers arrive in batches according to a compound 
Poisson process with group arrival rate ~ , where ~   is a fuzzy number. The actual number of 
customers in any arriving batch is stochastically equivalent to a generic random variable X, 
where X may take positive values with probability f(X). Let c1 and c2 denote the first and 
second moments of the batch size. If the arriving batch finds the server free, then one of the 
customers from that batch is taken for service with rate ~ , where ~  is a fuzzy number and 
the rest will join a pool of blocked customers called ‘orbit’ wherein the customers wait for 
random amount of time and then retry for service with rate . On the other hand, in case when 
the server is busy at the arrival epoch, then the whole batch joins the ‘orbit’. After each 
service completion, the server has a choice either to go for vacation with probability p and 
with rate~  ( ~   is a fuzzy number) or continues to provide service to the next customer in the 
queue with probability p1p  . The inter-arrival time, service time and vacation time are 
assumed to be general distributed in the fuzzy environment.  
 
 
3 The Solution Procedure 
 
In this study, we construct the membership functions for the expected number of customers in 
the orbit and the expected waiting time of the customers for a batch arrival retrial queue with 
Bernoulli vacation schedule for different service and vacation time distributions. Other fuzzy 
performance measures can also be derived by using the proposed solution procedure. 
 
 
3.1 Extension principle: Some Definitions 
 
In the queuing model, we assume that group arrival rate (~ ), service rate (~ ) and vacation 
rate (~ ) are fuzzy numbers which are approximately known. Then, we represent these fuzzy 
numbers as 

  )~(Sx/)x(,x~
~ 


     (1) 
  )~(Sy/)y(,y~

~     (2) 
  )~(Sw/)w(,w~

~      (3) 
 
Here, )b(a  and S(a) denote the membership function and support of a where a= ~ , ~ , ~  
are the fuzzy numbers and b=x, y, w are the crisp values corresponding to group arrival rate, 
service rate and vacation rate, respectively.  
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 Let )w,y,x(P  and )~,~,~(P~   denote the system performance measures of interest in the 
crisp and fuzzy environments, respectively. As ~ , ~ , ~  are fuzzy numbers, therefore 

)~,~,~(P~   will also be fuzzy. Using Zadeh’s extension principle [21], the membership 
function of the performance measure )~,~,~(P~   is defined as 
 

 ( , , )
, ,

( ) ( ), ( ), ( ) / ( , , )P
x X y Y w W

z Sup Min x y w z P x y w       
  

       (4) 

 
Now we derive the performance measures namely the expected number of customers in the 
orbit and the expected waiting time of the customers in the orbit. Following the work done by 
Senthilkumar and Arumuganatjan [22] in particular case when the server provides only single 
phase of service, the expected number of customers in the orbit and the expected waiting time 
of the customers in the orbit for a crisp retrial queue with batch arrival and Bernoulli vacation 
schedule for different service and vacation time distributions are as follows: 
 
 
(a) Model 1: MX/Ek/1 retrial queue with exponential Bernoulli vacation 
 
The expected number of customers in the orbit and the expected waiting time of the customers 
in the orbit for a crisp retrial queue with batch arrival and Bernoulli vacation schedule for k-
Erlangian service and exponential vacation time distributions are given by 
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(b) Model 2: MX//1 retrial queue with k-Erlangian Bernoulli vacation 
 
The expected number of customers in the orbit and the expected waiting time of the customers 
in the orbit for a crisp retrial queue with batch arrival and Bernoulli vacation schedule for 
gamma service and k-Erlangian vacation time distributions are given by 

   2 2 2
1 2 1 12 2

1 1

1 ( 1) 2 1 1 1

1 12 1 1
q

k p k p p pc x xc c x x c
ky kw yw y w y w

L
p pc x c x

y w y w


                    
        

      
         

      

     (7) 

1

q
q c

L
W


    (8) 

 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ao
r.

co
m

 o
n 

20
26

-0
1-

30
 ]

 

                             4 / 14

http://ijaor.com/article-1-239-en.html


Bernoulli Vacation Policy for a Bulk Retrial Queue with Fuzzy Parameters 5 

Using (4), the membership functions for Lq and Wq for model 1 are given by 
 

 ( , , )
, ,

( ) ( ), ( ), ( ) / qP
x X y Y w W

z Sup Min x y w z L       
  

      (9) 

 ( , , )
, ,

( ) ( ), ( ), ( ) / qP
x X y Y w W

z Sup Min x y w z W       
  

      (10) 

 
where Lq and Wq are given by eqs (5)-(6). 
Similarly, we can compute the membership functions for Lq and Wq for model 2. 
Though we have obtained the membership functions for Lq and Wq for the models 1 and 2, 
but we find difficult to imagine its shape. This problem can be overcome by developing 
parametric NLPs to find the -cuts of )~,~,~(P~   based on the Zadeh’s extension principle 
which is discussed in the next section. 
 
 
3.2 The -cut approach based on extension principle 
 
On the basis of the concept of -cuts (or -level sets), we develop a mathematical 
programming approach for deriving the desired membership function. The definitions for the 
-cuts of ~ , ~  and ~  as crisp intervals are as follows (cf. Zimmermann [23]): 
 
     

 )x(/Xx ~    (11) 
       )y(/Yy ~   (12) 
       )w(/Ww ~  (13) 
 
It is worthwhile to note that  ,   and   are crisp sets rather than fuzzy sets; these crisp 
sets can be expressed in the following forms: 
 

,L Ux x          / ( ) , / ( )
x X x X
Min x X x Max x X x    
 

         (14) 

  
UL y,y    / ( ) , / ( )

y Y y Y
Min y Y y Max y Y y    

 

      
    (15) 

  
UL w,w    / ( ) , / ( )

w W w W
Min w W w Max w W w    
 

         (16) 

 
The intervals defined above provide information that where the group arrival rate, service rate 
and vacation rate lie at possibility . By using the concept of -cuts, the imbedded fuzzy 
Markov chain in the MX/G/1 retrial queue with Bernoulli vacation schedule, can be 
decomposed into a family of ordinary Markov chains which possesses different transition 
probability matrices parameterized by . The three fuzzy parameters group arrival rate, 
service rate and vacation rate can also be expressed by different levels of confidence intervals 
(cf. Negi and Lee [16], Zimmermann [23]). As a result of this, the fuzzy batch arrival retrial 
queue with Bernoulli vacation can be reduced to a family of crisp batch arrival retrial queue 
with Bernoulli vacation with different -level sets  10/  ,  10/   and 
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 10/  . These three sets represent sets of movable boundaries, forming nested 
structures for expressing the relationship between ordinary sets and fuzzy sets (cf. Kaufmann 
[24]). By the convexity of a fuzzy number, the bounds of these intervals are functions of  
and can be obtained as  
 

1( )Lx Min    , 1( )Ux Max     
1( )Ly Min    , 1( )Uy Max     
1( )Lw Min    , 1( )Uw Max     

 
Now as defined in eq. (4), the membership function of )~,~,~(P~  is also parameterized by . 
Consequently its -cuts can be used to construct its membership function. 
 
 
3.3 Construction of membership function 
 
Consider the membership function of Lq. As given in eq. (4), )z(

qL~  is the minimum 

of )x(~


 , )y(~  and )w(~ . To deal with the value of membership function, we need at least 
one of the following conditions to hold such that z=Lq to satisfy  )z(

qL~ : 

(i) 


)x(~ ,  )y(~ ,  )w(~  
(ii) 


)x(~ ,  )y(~ ,  )w(~  

(iii) 


)x(~ ,  )y(~ ,  )w(~  
 
Moreover, from the definition of  ,   and   given in eqs. (11)-(13), x , y  and 

w can be respectively replaced by ,L Ux x x     ,  UL y,yy   and  UL w,ww  . This 
can be accomplished by using parametric non-linear programming techniques. The NLPs for 
cases (i) (ii) and (iii) for model 1 are formulated as below: 
 
Case (i):  
 

   
1

2 2 2
1 2 1 12 2

1 1

1 2 2 1 1 1

1 12 1 1

L
q

k p p p pc x xc c x x c
ky w yw y w y w

L Min
p pc x c x

y w y w





                    
        

      
         

      

 

s.t.  
 ,xxx UL

        w,y . 
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   

1

2 2 2
1 2 1 12 2

1 1

1 2 2 1 1 1

1 12 1 1

U
q

k p p p pc x xc c x x c
ky w yw y w y w

L Max
p pc x c x

y w y w





                    
        

      
         

      

 

s.t.  
 
 ,xxx UL

    w,y . 
 
 
Case (ii): 

   
2

2 2 2
1 2 1 12 2

1 1

1 2 2 1 1 1

1 12 1 1

L
q

k p p p pc x xc c x x c
ky w yw y w y w

L Min
p pc x c x

y w y w





                    
        

      
         

      

 

s.t. 
  ,yyy UL

    w,x . 
 
 

   
2

2 2 2
1 2 1 12 2

1 1

1 2 2 1 1 1

1 12 1 1

U
q

k p p p pc x xc c x x c
ky w yw y w y w

L Min
p pc x c x

y w y w





                    
        

      
         

      

 

s.t. 
 ,yyy UL

    w,x . 
 
 
Case (iii): 
 

   
3

2 2 2
1 2 1 12 2

1 1

1 2 2 1 1 1

1 12 1 1

L
q

k p p p pc x xc c x x c
ky w yw y w y w

L Min
p pc x c x

y w y w





                    
        

      
         

      

 

s.t.  
 ,www UL

    y,x . 
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   
3

2 2 2
1 2 1 12 2

1 1

1 2 2 1 1 1

1 12 1 1

U
q

k p p p pc x xc c x x c
ky w yw y w y w

L Min
p pc x c x

y w y w





                    
        

      
         

      

 

s.t. 
 ,www UL

    y,x . 
 
The NLPs for cases (i) (ii) and (iii) for the model 2 can be obtained in the same way. In order 
to find the membership function )z(

qL~ , it is sufficient to find the left shape function (LSF) 

and the right shape function (RSF) of )z(
qL~ , which in turn are used to find the lower bound 

L
qL


 and the upper bound U
qL


 of the -cuts of qL~  for model 1 which can be rewritten as 

   

1

2 2 2
1 2 1 12 2

, , ,

1 1

1 2 2 1 1 1

1 12 1 1

L
q x y z R

xc y

k p p p pc x xc c x x c
ky w yw y w y w

L Min
p pc x c x

y w y w








                    
        

      
         

      

 

s.t. 
 ,xxx UL

   UL yyy   and UL www   . 
 
 

   

1

2 2 2
1 2 1 12 2

, , ,

1 1

1 2 2 1 1 1

1 12 1 1

U
q

x y z R
xc y

k p p p pc x xc c x x c
ky w yw y w y w

L Max
p pc x c x

y w y w








                    
        

      
         

      

 

s.t. 
 ,xxx UL

   UL yyy   and UL www   . 
 
 
The lower bound and upper bound for model 2 can be written in the same way.  

This pair of mathematical programs falls into the category of parametric NLPs which 
facilitates the systematic study of how the optimal solutions change when Lx  , Ux  , Ly , Uy , 

Lw  , Uw   vary over the interval  1,0 . 

If both the lower bound L
qL


 and the upper bound U
qL


 of the -cuts of qL~  are invertible 

with respect to , then a LSF and a RSF can be obtained as   1L
qL)z(L




  and 

  1U
qL)z(R




 . Further, the membership function )z(

qL~  is constructed as 















43

32

21

L~

zzz),z(R
zzz,1

zzz),z(L
)z(

q
   (17) 
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It is noted that the membership functions for other system characteristics such as expected 
waiting time of the customers in the orbit for models 1 and 2 can be derived in a similar 
manner. 
 
 
4 The numerical illustration 
 
Consider the case of a Mutual Exclusive Life Insurance Company (MELIC) which has 
launched its branch in a city. There is a single telephone operator which takes care of the 
incoming calls in its telecommunication department. The group of calls arrives at the 
company following either Poisson or Gamma distribution. If the telephone line is free, the call 
is accepted; otherwise the call is stored in a buffer to be received some time later. The 
probability mass function of the batch size random variable X follows the geometrical 
distribution with expected value of 2. After each service completion, the telephone operator 
either goes for vacation such as making phone calls to potential customers to promote the 
company’s service and insurance policies or simply goes for recreation with probability p; or 
serves the next call with probability (1-p). All the group arrival rate, service rate and vacation 
rate are trapezoidal fuzzy numbers represented by  5,4,3,2~

 ,  16,15,14,13~  , 
 22,15,8,1~  , respectively. The company manager wishes to determine the average number 

of calls received by the telephone operator and the average waiting time spend by a call in the 
buffer due to busy circuits. 
Setting c1=2 and c2=6 in eqs (5) and (7), we get 
 
(a) For model 1. 
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(b) For model 2. 
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We find that     5,2x,x UL ,     16,13y,y UL  and     722,71w,w UL . 
As mentioned in section 3, we can formulate the NLPs for deriving the membership functions 
of qL~  and qW~  for models 1 and 2.  
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                                         (a)                                                              (b) 
 
Fig. 1 The membership functions for fuzzy expected number of customers in the orbit for (a) Model 1 (b) Model 2 
 
 
Then after the upper bounds and lower bounds of -cuts of Lq and Wq can be obtained for 
models 1 and 2 as 
 
(a) For model 1. 

          
F
E

D
BA

L 1L
q 
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
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                                          (a)                                                             (b) 
 
Fig. 2 The membership functions for fuzzy expected waiting time of customers in the orbit for (a) Model 1 (b) 
Model 2 
 

 
(b) For model 2. 
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          
  

 22
L

W
L

qL
q ;                  

  
 52

L
W

U
qU

q  

where 
 

         
         
    

4 3
1

2

98 1 147 32 21 224 1 2982 536 696

         - 1104 k 1 9684 96 6012 1408 1 9240 7072 1920

         3872 k 1 46464 9728 33792 ,

A k k k k p k k k k p

k k k p k k k p

k k k p

 

 

                 
              
      
         

         
    

4 3
2

2

98 1 147 32 21 952 1 1218 152 444

         2172 k 1 9216 3192 882 680 1 2706 17628 4520

         50 k 1 195 18200 2535 ,

A k k k k p k k k k p

k k k p k k k p

k k k p

 

 

                
               
      

 
       

       
   

2 4 2 3
3

2 2 2

2

98 1 2 1 28 224 1 56 1 424

         1104 1 264 1 624 1408 1 1792 1 3488

         3872 1 2048 1 3632 ,

A k k p k kp k k p k kp

k k p k kp k k p k kp

k k p k kp

 

 

               
                
      

 

       
       

   

2 4 2 3
4

2 2 2

2

98 1 2 1 28 952 1 32 1 88

         2172 1 132 1 2928 680 1 2080 1 8680

         50 1 8450 1 1300 ,

A k k p k kp k k p k kp

k k p k kp k k p k kp

k k p k kp

 

 

                
               
      

; 

     
   

4 3 2147 21 1218 444 9216 882

      2706 17628 195 2535 ,

B p k p k p k

p k p

  



      

   
 

     
   

4 3 2147 14 2100 296 2649 1610

      588 11752 39 1690 ,

D p k p k p k

p k p

  



     

   
 

       3 27 2 103 6 317 302 115 1110 ,E p p p p          

      p1303p1624p221F 2  . 
 
 
Table 1 -cuts of arrival, service and vacation rates and expected number of customers in the orbit for model 1 

 
 Lx  Ux  Ly  Uy  Lw  Uw   LqL


  UqL


 

 2.0 5.0 13.0 16.0 1.0 22.0 0.57 343.25 
 2.1 4.9 13.1 15.9 1.7 21.3 0.62 56.19 
0.2 2.20 4.8 13.20 15.80 2.40 20.60 0.68 33.60 
0.3 2.30 4.7 13.30 15.70 3.10 19.90 0.73 25.06 
0.4 2.40 4.6 13.40 15.60 3.80 19.20 0.79 20.53 
0.5 2.50 4.5 13.50 15.50 4.50 18.50 0.86 17.70 
0.6 2.60 4.4 13.60 15.40 5.20 17.80 0.92 15.75 
0.7 2.70 4.3 13.70 15.30 5.90 17.10 1.00 14.28 
0.8 2.80 4.2 13.80 15.20 6.60 16.40 1.08 13.09 
0.9 2.90 4.1 13.90 15.10 7.30 15.70 1.16 12.07 
1.0 3.00 4.0 14.00 15.00 8.00 15.00 1.26 11.17 
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Table 2 -cuts of arrival, service and vacation rates and expected number of customers in the orbit for model 2 
 

 Lx  Ux  Ly  Uy  Lw  Uw   LqL


  UqL


 

 2.0 5.0 13.0 16.0 1.0 22.0 3.08 344.23 
 2.1 4.9 13.1 15.9 1.7 21.3 3.41 58.61 
0.2 2.20 4.8 13.20 15.80 2.40 20.60 3.77 38.00 
0.3 2.30 4.7 13.30 15.70 3.10 19.90 4.16 31.83 
0.4 2.40 4.6 13.40 15.60 3.80 19.20 4.59 29.82 
0.5 2.50 4.5 13.50 15.50 4.50 18.50 5.05 29.44 
0.6 2.60 4.4 13.60 15.40 5.20 17.80 5.56 29.59 
0.7 2.70 4.3 13.70 15.30 5.90 17.10 6.11 29.72 
0.8 2.80 4.2 13.80 15.20 6.60 16.40 6.70 29.52 
0.9 2.90 4.1 13.90 15.10 7.30 15.70 7.34 28.88 
1.0 3.00 4.0 14.00 15.00 8.00 15.00 8.03 27.81 

 
 
The inverse functions of -cuts of Lq and Wq can be obtained for models 1 and 2 which in 
turn give the shape of the membership functions of -cuts of Lq and Wq for models 1 and 2 as 
shown in figs 1-2, respectively. Tables 1-4 summarizes the -cuts of arrival, service and 
vacation rates, expected number of customers in the orbit and expected waiting time of the 
customers in the orbit for both models 1 and 2. The default parameters for figs 1-2 and tables 
1-4 are chosen as p=0.02, =0.8 and k=3. The following observations have been made from 
these tables and figs: 
 
 
Table 3 -cuts of arrival, service and vacation rates and expected waiting time of customers in the orbit for 
model 1 

 
 Lx  Ux  Ly  Uy  Lw  Uw   LqW


  UqW


 

 2.0 5.0 13.0 16.0 1.0 22.0 0.14 34.32 
 2.1 4.9 13.1 15.9 1.7 21.3 0.14 5.73 
0.2 2.2 4.8 13.2 15.8 2.4 20.6 0.15 3.50 
0.3 2.3 4.7 13.3 15.7 3.1 19.9 0.16 2.66 
0.4 2.4 4.6 13.4 15.6 3.8 19.2 0.16 2.23 
0.5 2.5 4.5 13.5 15.5 4.5 18.5 0.17 1.96 
0.6 2.6 4.4 13.6 15.4 5.2 17.8 0.17 1.78 
0.7 2.7 4.3 13.7 15.3 5.9 17.1 0.18 1.66 
0.8 2.8 4.2 13.8 15.2 6.6 16.4 0.19 1.55 
0.9 2.9 4.1 13.9 15.1 7.3 15.7 0.20 1.47 
1.0 3.0 4.0 14.0 15.0 8.0 15.0 0.21 1.39 

 
 
Table 4 -cuts of arrival, service and vacation rates and expected waiting time of customers in the orbit for 
model 2 

 Lx  Ux  Ly  Uy  Lw  Uw   LqW


  UqW


 

 2.0 5.0 13.0 16.0 1.0 22.0 0.77 34.42 
 2.1 4.9 13.1 15.9 1.7 21.3 0.81 5.98 
0.2 2.2 4.8 13.2 15.8 2.4 20.6 0.85 3.95 
0.3 2.3 4.7 13.3 15.7 3.1 19.9 0.90 3.38 
0.4 2.4 4.6 13.4 15.6 3.8 19.2 0.95 3.24 
0.5 2.5 4.5 13.5 15.5 4.5 18.5 1.01 3.27 
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 Lx  Ux  Ly  Uy  Lw  Uw   LqW


  UqW


 

0.6 2.6 4.4 13.6 15.4 5.2 17.8 1.06 3.36 
0.7 2.7 4.3 13.7 15.3 5.9 17.1 1.13 3.45 
0.8 2.8 4.2 13.8 15.2 6.6 16.4 1.19 3.51 
0.9 2.9 4.1 13.9 15.1 7.3 15.7 1.26 3.52 
1.0 3.0 4.0 14.0 15.0 8.0 15.0 1.33 3.47 

 
 
(a) For the fuzzy queue length qL~ , the range of queue length at =1 is [1.26, 11.17] for 

model 1 and [8.03, 27.81] for model 2 (cf. tables 1-2) which tell us that it is definitely 
possible that the number of calls in the buffer falls between 1.26 and 11.17 for model 1 
and 8.03 and 27.81 for model 2. Moreover, the range of queue length at =0 is [0.58, 
343.25] for model 1 and [3.08, 344.24] for model 2 (cf. tables 1-2) which indicates that 
the number of calls in the buffer will never exceed 343.25 (344.24) or fall below 0.58 
(3.08) for model 1 (model 2).   

(b) For the fuzzy waiting time qW~ , the range of waiting time in seconds at =1 is [0.21, 1.39] 
for model 1 and [1.33, 3.47] for model 2 (cf. tables 3-4) which tell us that it is definitely 
possible that the waiting time of calls in the buffer falls between 0.21 and 1.39 for model 
1 and 1.33 and 3.47 for model 2. Moreover, the range of waiting time in seconds at =0 is 
[0.14, 34.32] for model 1 and [0.77, 34.42] for model 2 (cf. tables 3-4); it indicates that 
the waiting time of calls in the buffer will never exceed 34.32 (34.42) or fall below 0.14 
(0.77) for model 1 (model 2).   

(c) The information observed from the numerical investigation will be very useful for 
designing a queuing system which involves one or more combinations of several 
decisions, such as the efficiency of the servers, number of servers, waiting time of the 
customers, etc.. 
 
 

5 Conclusions 
 
In this paper, we have used the -cut approach to analyze a fuzzy queuing model. A pair of 
parametric NLPs to find the -cuts of the membership functions of the performance measures 
is employed. Following the proposed approach, -cuts of the membership functions are found 
and to attain explicit closed-form expressions for the system characteristics, their interval 
limits are inverted. As the performance measures are expressed by membership functions 
rather than by crisp values, more information provided to the system designers and decision 
makers may be helpful to improve the existing systems. Since the fuzzy performance 
measures of fuzzy queues derived from the proposed approach maintain the fuzziness of input 
information; therefore the derived results can be used to represent the real time systems as 
fuzzy system more accurately. 
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