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Abstract In this paper, we investigate the fuzzy logic based system characteristics of M*/G/1 retrial
queuing system with Bernoulli vacation schedule. The service time and vacation time are assumed to
be generally distributed. It is found in many practical situations that the queuing models with fuzzy
parameters are much more realistic than the classical crisp parameters based queuing models. We have
chosen group arrival rate, service rate and vacation rate to be fuzzy parameters. The objective of this
study in this paper is to transform M*/G/1 retrial fuzzy queue with Bernoulli vacation schedule to a
family of conventional crisp queues by employing a-cut approach based on Zadeh’s extension
principle. We formulate a pair of parametric non-linear programs (PNLPs) to describe the family of
crisp queues with a vacationing server. To illustrate the validity of the proposed approach, the
numerical examples are facilitated for different service time and vacation time distributions.

Keywords Retrial Queue, Batch Arrival, Bernoulli Vacation, Fuzzy Sets, Queue Length.

1 Introduction

Retrial queuing systems are characterized by the requirement of the customers who on finding
the service area busy must join the retrial group and retry for service after a random interval
of time. Queuing systems with retrial customers are quite common in many real world
congestion situations, including web access, call centers, telephone switch systems, digital
cellular mobile networks and computer networks, etc. Krishna Kumar and Arivudainambi [1]
gave the analysis of a single server queue with Bernoulli vacation schedules and general
retrial times. The detailed analysis of a retrial queuing model with optional phase type server
vacations based on exhaustive deterministic service and a single vacation policy was done by
Madan and Al-Rub [2]. Wenhui [3] considered the M/G/1 retrial queue with Bernoulli
vacation and generic retrial, vacation, setup and service times. They have established the
ergodic condition and obtained the probability generating function of the system size.
Sherman and Kharoufeh [4] analyzed M/M/1 retrial queue with unreliable server whose
normal and retrial queues have infinite storage capacity. An M*/G/1 queuing system with two
phases of heterogeneous service and Bernoulli vacation schedule which operate under
classical retrial policy has been discussed by Choudhury [5]. This model generalizes both the
classical M/G/1 retrial policy with arrivals in batches and a two phase batch arrival queue
with single vacation under Bernoulli vacation schedule. Further in [6], he extended the same
model to operate under the linear retrial policy. Recently, a batch arrival retrial queue with

* Corresponding Author. (0<)
E-mail: shwetau28@gmail.com (S. Upadhyaya)

S. Upadhyaya
Amity Institute of Applied Sciences, Amity University, Noida, U. P., India.


http://ijaor.com/article-1-239-en.html

[ Downloaded from ijaor.com on 2026-01-30 ]

2 S. Upadhyaya / IJAOR Vol. 3, No. 3, 1-14, Summer 2013 (Serial #9)

general retrial times, where the server is subject to starting failures and provides two phases of
heterogeneous services to all customers under Bernoulli vacation schedules was investigated
by Ke and Chang [7]. Moreover, Boualem et al. [8] have derived several stochastic
comparison properties in the sense of strong stochastic ordering and convex ordering for an
M/G/1 retrial queue with vacations.

While looking towards traditional queuing theory, we find that the inter-arrival times,
service times and vacation times are required to follow certain probability distributions with
fixed parameters. However, in many practical situations, the arrival pattern of the customers,
the service pattern and vacation pattern of the server are typically described by linguistic
values such as fast, slow or moderate rather than with complete probability distributions. Thus
by considering some system parameters as fuzzy numbers, the queuing models so developed
have wider range of applications in the real life. The literature of fuzzy queues is not much
rich; although significant works have been done on fuzzy queues in the recent past. The works
on fuzzy queues includes the analysis and design of membership functions for the system
characteristics for some well known queuing models such as queues with batch arrival (cf.
Chen [9]), retrial queues (cf. Ke et al.[10]), bulk service queues (cf. Chen [11]), unreliable
server queues (cf. Ke and Lin [12]), queues with vacation (cf. Ke et al. [13]), finite-capacity
queues (cf. Chen [14]) and their combinations and many others. It is worthwhile to mention
some notable works on fuzzy queues in different frameworks. Li and Lee [15] proposed a
general approach for queuing systems in a fuzzy environment based on Zadeh’s extension
principle. However, their approach is complicated and creates difficulty for applying in fuzzy
queues with server vacation. Negi and Lee [16] proposed the a-cut and two-variable
simulation approaches to solve some fuzzy queues; but their approaches have failed to
describe the membership functions of various performance measures of these queues. Kao et
al. [17] applied a-cut approach to reduce a fuzzy queue into a family of crisp queues.

Chen [11] was able to conserve the fuzziness of input information when some
information of bulk service queuing systems is ambiguous. Further in [9], he developed a
non-linear programming approach to derive the membership functions of the steady-state
performance measures in bulk arrival queuing systems with varying batch sizes, wherein the
arrival rate and service rate are fuzzy numbers. The membership functions of the system
characteristics of a batch arrival queuing model with vacation policies were constructed by Ke
et al. [13]. They suggested that by extending the classical queuing models with server
vacation to the fuzzy environment, more information in the form of analytic results are
provided which can then be easily implemented by the system designers and practitioners in
real time situations. Further, in [10], Ke et al. constructed the membership functions of the
system characteristics of a retrial queuing model with fuzzy arrival, retrial and service rates.
They have facilitated a numerical example to validate the proposed approach. Lin and Ke [18]
have developed parametric non-linear programs to convert a crisp controllable queuing model
to the respective fuzzy model in which cost elements, arrival rate and service rate are all fuzzy
numbers. Ritha and Robert [19] applied fuzzy set theory to estimate the uncertainty associated
with the input parameters of M/M/1/1 retrial queue. They have used a-cut approach and fuzzy
arithmetic operations to derive the system characteristics. Recently, Ritha and Menon [20]
have proposed a procedure to construct a membership function of the performance measures
of a queue with removable and reliable server. They have chosen arrival rate and service rate
in the fuzzy environment.

In the present paper, we investigate the system characteristics of batch arrival retrial
queuing system with Bernoulli vacation schedule by assuming the arrival, service and
vacation rates as fuzzy numbers. The rest of the paper is organized as follows. In section 2,
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we formulate the model by stating the suitable assumptions. The fuzzy membership functions
based on Zadeh’s extension principle are described in section 3. Section 4 facilitates the
numerical examples to explore the validity of analytical model to the real world congestion
situations. Finally, in section 5, the paper is wind up with the conclusion and highlighting the
scopes of the work done for future aspirants.

2 Problem Formulations

Consider an M*/G/1queueing system wherein the single server follows Bernoulli vacation
schedule. In this queuing system, the customers arrive in batches according to a compound

Poisson process with group arrival rate A, where & isa fuzzy number. The actual number of
customers in any arriving batch is stochastically equivalent to a generic random variable X,
where X may take positive values with probability f(X). Let c¢; and ¢, denote the first and
second moments of the batch size. If the arriving batch finds the server free, then one of the
customers from that batch is taken for service with rate |1, where [t is a fuzzy number and
the rest will join a pool of blocked customers called ‘orbit’ wherein the customers wait for
random amount of time and then retry for service with rate 0. On the other hand, in case when
the server is busy at the arrival epoch, then the whole batch joins the ‘orbit’. After each
service completion, the server has a choice either to go for vacation with probability p and
with ratev (Vv is a fuzzy number) or continues to provide service to the next customer in the
queue with probability p =1—p. The inter-arrival time, service time and vacation time are
assumed to be general distributed in the fuzzy environment.

3 The Solution Procedure

In this study, we construct the membership functions for the expected number of customers in
the orbit and the expected waiting time of the customers for a batch arrival retrial queue with
Bernoulli vacation schedule for different service and vacation time distributions. Other fuzzy
performance measures can also be derived by using the proposed solution procedure.

3.1 Extension principle: Some Definitions

In the queuing model, we assume that group arrival rate (X ), service rate ({1 ) and vacation

rate (v ) are fuzzy numbers which are approximately known. Then, we represent these fuzzy
numbers as

%= {x (0)/x eSO (1)
=y, () y €S )
V={(W. 1 (W))/ w e SV} 3)

Here, p,(b) and S(a) denote the membership function and support of a where a= x, n, v

are the fuzzy numbers and b=x, y, w are the crisp values corresponding to group arrival rate,
service rate and vacation rate, respectively.
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Let P(x,y,w) and }N)(?Nu,ﬁ, V) denote the system performance measures of interest in the
crisp and fuzzy environments, respectively. As r, n, v are fuzzy numbers, therefore
}N)(X,H,V) will also be fuzzy. Using Zadeh’s extension principle [21], the membership

function of the performance measure }N)(?Nu,ﬁ, V) is defined as

Hpiam(@)= Sup Mi”{#z(x)aﬂﬂ(y)aﬂa(w)/z :P(X,y,w)} (4)

xeX.,yel wev

Now we derive the performance measures namely the expected number of customers in the
orbit and the expected waiting time of the customers in the orbit. Following the work done by
Senthilkumar and Arumuganatjan [22] in particular case when the server provides only single
phase of service, the expected number of customers in the orbit and the expected waiting time
of the customers in the orbit for a crisp retrial queue with batch arrival and Bernoulli vacation
schedule for different service and vacation time distributions are as follows:

(a) Model 1: M*/E,/1 retrial queue with exponential Bernoulli vacation
The expected number of customers in the orbit and the expected waiting time of the customers

in the orbit for a crisp retrial queue with batch arrival and Bernoulli vacation schedule for k-
Erlangian service and exponential vacation time distributions are given by

{clzx{(k +21) + 2—12 + 2pj + xc{l +pﬂ {clx{l +pJ +x(c, —1)}
ky W yw y W y W
L = + (5

B N

W, =& (6)

(b) Model 2: M¥/y/1 retrial queue with k-Erlangian Bernoulli vacation

The expected number of customers in the orbit and the expected waiting time of the customers
in the orbit for a crisp retrial queue with batch arrival and Bernoulli vacation schedule for
gamma service and k-Erlangian vacation time distributions are given by

{clzx{(itl)vtpgck t1)+ 2p j+xc2 (lerﬂ {clxz(lvtp}rx (¢, —1)}
L, - > L Yy 7oL PP (7)

| 2{1‘“’“ C*ﬁﬂ e{l-clx Um‘:ﬂ

W, =& ®)
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Using (4), the membership functions for Ly and W, for model 1 are given by

Hoan (@)= Sup  Min{p,(x), u;(3) pt;0) /2 =L, } 9)
xeX.,yel wev
i in@)= Sup  Min{p;(x), 1, (0) W)/ z =W, | (10)

xeX.,yel wev

where L, and Wqare given by eqgs (5)-(6).

Similarly, we can compute the membership functions for Ly and W, for model 2.

Though we have obtained the membership functions for Ly and W, for the models 1 and 2,
but we find difficult to imagine its shape. This problem can be overcome by developing

parametric NLPs to find the a-cuts of f’(?:,ﬁ, V) based on the Zadeh’s extension principle
which is discussed in the next section.

3.2 The a-cut approach based on extension principle

On the basis of the concept of a-cuts (or a-level sets), we develop a mathematical
programming approach for deriving the desired membership function. The definitions for the

a-cuts of A, i and Vv as crisp intervals are as follows (cf. Zimmermann [23]):

Ay =X e X/ (x) > af (11)
Mo =1y e Y/up(y) 2 af (12)
v, ={weW/u,(w)>a} (13)

It is worthwhile to note that A, p and v are crisp sets rather than fuzzy sets; these crisp
sets can be expressed in the following forms:

A, :[xof,xs}=[])\c/[€z)'(n {x eX //,ti(x)Za},]\i[g(x {x eX //,ti(x)Za}} (14)
M, =[yi;,y3]={fggn (v ¥ Tz af, Max {y ey /uﬂ(y)Za}} (15)
v, =[W§,W3]=[]XI£1 {w ew //,t‘;(w)Za}, Max {w ew //,tv.(w)Za}} (16)

The intervals defined above provide information that where the group arrival rate, service rate
and vacation rate lie at possibility a. By using the concept of a-cuts, the imbedded fuzzy
Markov chain in the M*/G/1 retrial queue with Bernoulli vacation schedule, can be
decomposed into a family of ordinary Markov chains which possesses different transition
probability matrices parameterized by o. The three fuzzy parameters group arrival rate,
service rate and vacation rate can also be expressed by different levels of confidence intervals
(cf. Negi and Lee [16], Zimmermann [23]). As a result of this, the fuzzy batch arrival retrial
queue with Bernoulli vacation can be reduced to a family of crisp batch arrival retrial queue
with Bernoulli vacation with different o-level sets {A,/0<a <1}, {u, /0<a<1} and
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{v,/0<a<1}. These three sets represent sets of movable boundaries, forming nested

structures for expressing the relationship between ordinary sets and fuzzy sets (cf. Kaufmann
[24]). By the convexity of a fuzzy number, the bounds of these intervals are functions of o
and can be obtained as

xb = Ming;\@), x¥ = Max 17 (@)
Yo =Minu(a), y, =Max u;' ()
L

w =Minp'(a), w, =Max u;' (o)

Now as defined in eq. (4), the membership function of }N)(?Nu,ﬁ, V)is also parameterized by o.
Consequently its o-cuts can be used to construct its membership function.

3.3 Construction of membership function

Consider the membership function of L. As given in eq. (4), u; (z) is the minimum

of p-(x), uy(y) andpg(w). To deal with the value of membership function, we need at least

one of the following conditions to hold such that z=L, to satisfy p. (z) = a:

D) p;x)=0, k() za, py(w)2a
(i) pr(x)za, p(y)=a, pg(w)z2a
({)pz(x)2a, p(y)za, pg(w)=a

Moreover, from the definition of A_, 1 and v_ given in egs. (11)-(13),x €A, yep, and
w e v can be respectively replaced by x e [xft,xs},ye [yfl,y([j] and w e [wi,wfj]. This

can be accomplished by using parametric non-linear programming techniques. The NLPs for
cases (1) (ii) and (iii) for model 1 are formulated as below:

Case (i):
(e )| [ (e te)
Lo =Min y. W yw Yy Y1, r
I I 7 E)
yow rov
S.z.

L U
X, SX<X,, YEU,WEV,.
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k+1
Rl i M Enc | W e s
ky* w? yw yow y w

L, =Max

= o s

L U
X, SX<X, ,YEU,WEV, .

S.t.

Case (ii):

(G2 2 e [ ]| e[ L2 orte)
) I 2D

L U
Vo SYSY,LXEA ,WEV, .

L .
L,; =Min

S.t.

(e G| [ (e )ete)
P Ve N NS L M G ) N N €
]
yow yow
S.1.

L U
Vo SYSY,LXEA ,WEV, .

Case (iii):

{c;xz@’;;;ugg+§5]+xc{;ﬂ (L (o)
) I 2D

L U
W, <SWSW_,XeEA, ,YeEU,.

L .
L,; =Min

S.t.
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k +1
CIZXZ(( 2)+2€+2lyj+xcz(l+pJ:| |:Clx2(l+pj+x (Cl_l)jl
ky wooyw y o ow y ow

L, =Min { +
2{1—c1x (IJFPH 6{1—01)6 (1+pﬂ
y w y w

L U
W, SWSW_,XEA, ,YENU,.

S.t.

The NLPs for cases (i) (ii) and (iii) for the model 2 can be obtained in the same way. In order
to find the membership function 1. (z), it is sufficient to find the left shape function (LSF)

and the right shape function (RSF) ofp: (z), which in turn are used to find the lower bound

Lq; and the upper bound qu of the a-cuts of iq for model 1 which can be rewritten as

k +1

% x,v,z€R™,
e 2{1—c1x (IJFPH 6{1—01)6 (1+pﬂ
y ow y w

s.1.

Xxp <x<xU, yr<y<yland w. <w<w’.

k+1) 2 2 1
clzx{( 2)+€+pj+xcz(+pj c1x2(1+pj+x (cl—l)
LY = Ma ky wooyw y o ow . y ow
Ehd _x,r,zeR+,
<y 2{1—c1x (IJFPH 6’{1—01)6 (1+pﬂ
y o ow y w

s.1.

L U L U L U
Xg SX<X,, y,<y<y,and w, <w<w,_.

The lower bound and upper bound for model 2 can be written in the same way.
This pair of mathematical programs falls into the category of parametric NLPs which

facilitates the systematic study of how the optimal solutions change whenx’, xV, y' yU,
w, w! vary over the interval a € (0,1).

If both the lower bound L q; and the upper bound L qs of the a-cuts of L . are invertible

1

with respect to o, then a LSF and a RSF can be obtained as L(z):(Lq;)f and
R(z):(L o )71. Further, the membership function [ (z) is constructed as

L(z), z,<z<z,
wy (z) =11, z,<z<12, (17)
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It is noted that the membership functions for other system characteristics such as expected
waiting time of the customers in the orbit for models 1 and 2 can be derived in a similar
manner.

4 The numerical illustration

Consider the case of a Mutual Exclusive Life Insurance Company (MELIC) which has
launched its branch in a city. There is a single telephone operator which takes care of the
incoming calls in its telecommunication department. The group of calls arrives at the
company following either Poisson or Gamma distribution. If the telephone line is free, the call
is accepted; otherwise the call is stored in a buffer to be received some time later. The
probability mass function of the batch size random variable X follows the geometrical
distribution with expected value of 2. After each service completion, the telephone operator
either goes for vacation such as making phone calls to potential customers to promote the
company’s service and insurance policies or simply goes for recreation with probability p; or
serves the next call with probability (1-p). All the group arrival rate, service rate and vacation
rate are trapezoidal fuzzy numbers represented by?Nu = [2,3,4,5],ﬁ = [13,14,15,16],
V= [1,8,15,22] , respectively. The company manager wishes to determine the average number

of calls received by the telephone operator and the average waiting time spend by a call in the
buffer due to busy circuits.
Setting ¢;=2 and c,=6 in eqs (5) and (7), we get

(a) For model 1.

{2){{<kil)+2g+2pj+3x(l+pﬂ {2x2(1+pj+x}

B ky wo o yw y W . y W
. =
{1 - 2{1 + pﬂ 9{1 - 2{1 + pﬂ
y w y W
(b) For model 2.
2x° (k+21)+p(k+21)+2—p +3X(l+pJ x| L P |k

L - ky kw yW y W y W

G TS

We find that [x,xV]|=[2+a,5-a], [y".y"]=[13+a 16—a] and [w,wV|=[1+7a, 22-7a].
As mentioned in section 3, we can formulate the NLPs for deriving the membership functions
of iq and Wq for models 1 and 2.

L
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1 1
09 + 09 &
08 + 08 &
07 + 07 &
06 T 0.6 +

3 05 8 05
04 04 +
03+ 03+
02+ 02+
01+ 01 +

I T e e B e e e I R 0
0 15 30 45 60 75 90 105 120
Lq
(@) (b)

Fig. 1 The membership functions for fuzzy expected number of customers in the orbit for (a) Model 1 (b) Model 2
Then after the upper bounds and lower bounds of a-cuts of Ly and W, can be obtained for
models 1 and 2 as

(a) For model 1.
(Lq);:(AlJFB)JFE. (Lq)j:(AerB)Jr%

2 35 5 6.5 8 95 11

Fig. 2 The membership functions for fuzzy expected waiting time of customers in the orbit for (a) Model 1 (b)
Model 2

(b) For model 2.
L) -\A*B L E q p_(A+B)E
9/a D F 9/ D F
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where

A, =[{98(k +1)=147k | +{32k =21k } p | o* +[ {~224(k +1)+ 2982k } +{-536k +696k } p | &’
[ {1104(k +1)+9684k | +{96k +6012k } p | o> +[ {1408 (k +1)—9240} +{7072k ~1920k } p |t
+[ {3872(k+1) + 46464k } + {9728k +33792k } p |,

A, =[{98(k +1) =147k |+ {32k —21k } p |or* ~[ {952(k +1)+ 1218k } + {152k +444k | p |o
+[{2172(k +1)+9216k | — {3192k +882k | p | o> +[ {680(k +1)+2706 +{17628k +4520k } p |
+[ {50(k+1)+195k } +{18200k +2535k | p |,

Ay =[98k (k +1)+2p (k +1)+28kp |a* —[ 224k (k +1)+56p (k +1)+424kp | o’
+[~1104k > (k +1)+264p (k +1)—624kp |a” +[ 1408k > (k +1)+1792p (k +1)+3488kp |
+[ 3872k (k +1)+2048p (k +1)+36324p |,
A, =[98k’ (k +1)+2p (k +1)+28kp | o +[ 952k * (k +1)+32p (k +1)+88kp | o’
+[ 2172k (k +1)—-132p (k +1)-2928kp | o” +[ 680k * (k +1)—2080p (k +1)+8680kp |
+[ 50k (k +1)+8450p (k +1)+1300kp |,
B =—(147+21p)ka’ —(1218+444p)ka’ +(9216-882p ) ko’
+(2706 +17628p )k o +(195+2535p ),
D =(147+14p )k a* +(2100+296p )k a® +(2649+1610p ) k o
+(588-11752p ) ko +(39-1690p),
E =(7+2p)a’ +(~103+6p)a’ +(317-302p)a +(115+1110p),
F=0[(21+2p)o” +(24+16p)o +(3-130p)).

Table 1 a-cuts of arrival, service and vacation rates and expected number of customers in the orbit for model 1

N T T N
0.0 2.0 5.0 13.0 16.0 1.0 22.0 0.57 343.25
0.1 2.1 4.9 13.1 15.9 1.7 21.3 0.62 56.19
0.2 2.20 4.8 13.20 15.80 2.40 20.60 0.68 33.60
0.3 2.30 4.7 13.30 15.70 3.10 19.90 0.73 25.06
0.4 2.40 4.6 13.40 15.60 3.80 19.20 0.79 20.53
0.5 2.50 4.5 13.50 15.50 4.50 18.50 0.86 17.70
0.6 2.60 4.4 13.60 15.40 5.20 17.80 0.92 15.75
0.7 2.70 4.3 13.70 15.30 5.90 17.10 1.00 14.28
0.8 2.80 4.2 13.80 15.20 6.60 16.40 1.08 13.09
0.9 2.90 4.1 13.90 15.10 7.30 15.70 1.16 12.07
1.0 3.00 4.0 14.00 15.00 8.00 15.00 1.26 11.17
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Table 2 a-cuts of arrival, service and vacation rates and expected number of customers in the orbit for model 2

L

U

L

U

a Xa Xa y{; y(';,J W Wa (Lq); (L‘I);J
0.0 2.0 5.0 13.0 16.0 1.0 22.0 3.08 344.23
0.1 2.1 4.9 13.1 15.9 1.7 21.3 3.41 58.61
02 220 48 1320 15.80 240 20.60 3.77 38.00
03 230 4.7 13.30 15.70  3.10  19.90 4.16 31.83
04 240 4.6 1340 15.60 3.80 19.20 4.59 29.82
0.5 250 45 13.50 1550 4.50 18.50 5.05 29.44
0.6 260 44 13.60 1540 520 17.80 5.56 29.59
0.7 270 43 13.70 1530 590 17.10 6.11 29.72
0.8 280 4.2 13.80 1520 6.60 16.40 6.70 29.52
09 29 4.1 1390 15.10 7.30 15.70 7.34 28.88
1.0 3.00 4.0 14.00 15.00 8.00 15.00 8.03 27.81

The inverse functions of a-cuts of Ly and W4 can be obtained for models 1 and 2 which in
turn give the shape of the membership functions of a-cuts of Ly and W for models 1 and 2 as
shown in figs 1-2, respectively. Tables 1-4 summarizes the oa-cuts of arrival, service and
vacation rates, expected number of customers in the orbit and expected waiting time of the
customers in the orbit for both models 1 and 2. The default parameters for figs 1-2 and tables
1-4 are chosen as p=0.02, 6=0.8 and k=3. The following observations have been made from

these tables and figs:

Table 3 o-cuts of arrival, service and vacation rates and expected waiting time of customers in the orbit for

model 1

o xboxlyE oy owh W (w) (W)
0.0 2.0 5.0 13.0 16.0 1.0 22.0 0.14 34.32
0.1 2.1 4.9 13.1 15.9 1.7 21.3 0.14 5.73
0.2 2.2 4.8 13.2 15.8 2.4 20.6 0.15 3.50
0.3 2.3 4.7 13.3 15.7 3.1 19.9 0.16 2.66
0.4 2.4 4.6 13.4 15.6 3.8 19.2 0.16 2.23
0.5 2.5 4.5 13.5 15.5 4.5 18.5 0.17 1.96
0.6 2.6 4.4 13.6 15.4 5.2 17.8 0.17 1.78
0.7 2.7 4.3 13.7 15.3 5.9 17.1 0.18 1.66
0.8 2.8 4.2 13.8 15.2 6.6 16.4 0.19 1.55
0.9 2.9 4.1 13.9 15.1 7.3 15.7 0.20 1.47
1.0 3.0 4.0 14.0 15.0 8.0 15.0 0.21 1.39

Table 4 o-cuts of arrival, service and vacation rates and expected waiting time of customers in the orbit for

model 2
o xtoxyoyk vl oweoowd o (W (W)
0.0 2.0 5.0 13.0 16.0 1.0 22.0 0.77 34.42
0.1 2.1 4.9 13.1 15.9 1.7 21.3 0.81 5.98
0.2 2.2 4.8 13.2 15.8 2.4 20.6 0.85 3.95
0.3 2.3 4.7 13.3 15.7 3.1 19.9 0.90 3.38
0.4 2.4 4.6 13.4 15.6 3.8 19.2 0.95 3.24
0.5 2.5 4.5 13.5 15.5 4.5 18.5 1.01 3.27
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o xtoxyoyk vl oweoowd o (W (W)
06 26 44 136 154 52 178 106 336
07 27 43 137 153 59 171 113 345
08 28 42 138 152 66 164 119  3.51
09 29 41 139 151 73 157 126  3.52
1.0 30 40 140 150 80 150 133 347
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(a) For the fuzzy queue length iq, the range of queue length at a=1 is [1.26, 11.17] for

model 1 and [8.03, 27.81] for model 2 (cf. tables 1-2) which tell us that it is definitely
possible that the number of calls in the buffer falls between 1.26 and 11.17 for model 1
and 8.03 and 27.81 for model 2. Moreover, the range of queue length at a=0 is [0.58,
343.25] for model 1 and [3.08, 344.24] for model 2 (cf. tables 1-2) which indicates that
the number of calls in the buffer will never exceed 343.25 (344.24) or fall below 0.58
(3.08) for model 1 (model 2).

(b) For the fuzzy waiting time Wq , the range of waiting time in seconds at a=1 is [0.21, 1.39]

for model 1 and [1.33, 3.47] for model 2 (cf. tables 3-4) which tell us that it is definitely
possible that the waiting time of calls in the buffer falls between 0.21 and 1.39 for model
1 and 1.33 and 3.47 for model 2. Moreover, the range of waiting time in seconds at a=0 is
[0.14, 34.32] for model 1 and [0.77, 34.42] for model 2 (cf. tables 3-4); it indicates that
the waiting time of calls in the buffer will never exceed 34.32 (34.42) or fall below 0.14
(0.77) for model 1 (model 2).

(c) The information observed from the numerical investigation will be very useful for
designing a queuing system which involves one or more combinations of several
decisions, such as the efficiency of the servers, number of servers, waiting time of the
customers, etc..

5 Conclusions

In this paper, we have used the a-cut approach to analyze a fuzzy queuing model. A pair of
parametric NLPs to find the a-cuts of the membership functions of the performance measures
is employed. Following the proposed approach, a-cuts of the membership functions are found
and to attain explicit closed-form expressions for the system characteristics, their interval
limits are inverted. As the performance measures are expressed by membership functions
rather than by crisp values, more information provided to the system designers and decision
makers may be helpful to improve the existing systems. Since the fuzzy performance
measures of fuzzy queues derived from the proposed approach maintain the fuzziness of input
information; therefore the derived results can be used to represent the real time systems as
fuzzy system more accurately.
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