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Abstract This paper presents two meta-heuristic algorithms to solve an extended portfolio selection 
model. The extended model is based on the Markowitz's Model, aiming to minimize investment risk in 
a specified level of return. In order to get the Markowitz model close to the real conditions, different 
constraints were embedded on the model which resulted in a discrete and non-convex solution space. 
However, due to the NP-hard nature of the problem; two meta-heuristic algorithms were used, namely 
the simulated annealing and electromagnetic algorithms. Comparative result indicated high efficiency 
of the extended model and the solution presented by the electromagnetic algorithm.  
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1 Introduction  
 
Financial markets are among the most major marketplaces for a country whose conditions 
exert significant impact on real economic sectors and are seriously affected by others (not 
essentially in short-term). One of the most important elements of financial markets is the 
Stock Exchange. This element is considered as a formal and organized marketplace for the 
exchange of shares of company stock under special terms and conditions.   

Customers, in general, have three options to analyze shares of this type; 1) fundamental 
analysis; 2) technical analysis (charting); and 3) portfolio analysis [1]. Unlike the others, the 
latter is the core to assess risk and return, based on two hypotheses: first, markets are 
efficient, and second, there are available data for markets and individual stocks [2]. In the 
current study, this approach is used for analyzing stocks and how to invest. While the analysis 
of securities investment is discussed in two general frameworks as follows: (1) Analysis of 
stock selection in an individual manner, ranging from stocks of manufacturing and service 
firms to shares of investment companies investing on the former and (2) Design of a 
systematic portfolio.  

The first framework applies the fundamental and technical analysis approaches to analyze 
and select stock. However, the second framework is concerned with the modern portfolio 
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theory (MPT), i.e. the efficient market hypothesis (EMH) [3]. The current study focuses on 
portfolio analysis methodology.  

"Portfolio" simply means a "basket of investment" generally, and a "basket of stocks" in 
particular. It consists of a combination of assets holding by an investor, whether an individual 
or entity. Technically, a portfolio may comprise a complete set of real and financial assets for 
an investor. Note that this paper concerns just financial assets [2].  

Financial modeling has been developed by integrating financial approach and 
mathematical programming, in response to the need to optimize financial and investment 
decision-making processes. For portfolio design problem, the main question is that among 
securities or stocks with given yield and return on investment, which we have to choose in 
order to ensure an appropriate return, as well as a minimized investment risk.  

Regardless of scientific viewpoint to the mean variance model (the Markowitz-type 
model), it is often a very simple model to provide a proper complexity of stock selection 
problems. The primary model of a portfolio, for example, evaluates only risk and stock return; 
while an actual portfolio is affected by many variables in the real world. By undertaking a 
literature review and addressing stock market behaviors, the current paper seeks to present a 
more complete model in order to simulate the real world complexity properly. In addition, 
using the electromagnetic algorithm provides better solutions for the model in a short time 
interval, compared to other algorithms.  

 
 

2 Assumptions  
 
First, development of a portfolio optimization model is founded on the basic assumptions of 
the Markowitz model. Investors are sensitive in returns, while uninterested to risk; they also 
show a rational behavior and decide to maximize their expected utility. Investors' utility, 
therefore, is a function of expected values of risk and return. Furthermore, stock markets are 
assumed to act as the efficient market hypothesis where investors determine stock prices 
according to assets' expected future cash flows and their risks [2]. On the other hand, within 
the efficient market, available data has an immediate effect on stock prices.  The efficient 
market concept is conceptually rooted in the assumption that investors will consider all 
relevant data to define stock prices, when deciding to trade. Therefore, present stock prices 
include all known data ranging from the past (e.g. last season's/year's yield) to the present [3].  
 
 
3 Literature review  
 
Given the importance of optimal portfolio selection problem and its application in today's 
world, numerous articles have been published about this field. In his paper, Chen represented 
return rates and risk by triangular fuzzy numbers. Also, based on four major indices, 
including rates of return, risk, turnover rate and Treynor index, he divided stocks into four 
groups namely efficiency, stable-value, aggressive, and good efficiency funds.  His fuzzy 
model tried to minimize investment risks and simultaneously maximize return rates, by 
defining investment ratio in each group. Among these four groups, good efficiency funds 
dominated the others so that only this group was entered into the model. Moreover, Chen 
found that fuzzy operation obtained better results for the return rates and risks, because of its 
uncertainty [4]. 
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Lin and Liu presented six models based on the Markowitz model and used a multi-criteria 
decision making (MCDM) approach by concerning the nature of problem. One model was 
developed according to fuzzy numbers and the MCDM. As they indicated, a decision-maker 
can describe his own priorities based on weighted values of return and risk; as well provide 
results as close as possible to the real world. It should be noted that Lin and Liu applied a 
simulated annealing algorithm to solve the model [5]. 

Chang and the colleagues showed that how restricted numbers of stocks selected by an 
investor could make an efficient frontier discontinuous. In addition to constraints of the 
Markowitz model, they added numbers of portfolio stocks to their research. By using three 
meta-heuristic algorithms, i.e. TABU research, simulated annealing, and gradual freezing, 
research findings indicated that the simulated annealing algorithm can provide a better result 
at scales with more than 100 stocks in sizes [6]. In sum, research contents conducted on 
portfolio problems based on Markowitz's modern theory can be divided into two general 
stages:  

1. To develop new model, and 
2. To solve model  

 
 
3.1 Developing a new model  
 
Markowitz's modern portfolio theory has provided a novel model of portfolio selection 
problem for investors in terms of forming portfolio with the highest expected return (yield) at 
a given level of risk or with the minimal risk at a given level of return [7, 8, 9]. Great attempts 
have been devoted to solve and extend the Markowitz model, resulting in more practical 
model with regards to real market constraints.  

Markowitz (1956) developed the critical linear technique to solve his quadratic model 
[10]. Wolfe tried to solve the model by the simplex approach [11]. Then, Markowitz 
presented more detailed studies by the semi-variance method [12].  

Speranza (1993) introduced a more general model with weighted risk function for the 
first time [1], also presented an integrated planning model by concerning actual characteristics 
of portfolio selection like the minimum amount of transactions and the maximum number of 
portfolio stocks. Further research considered different constraints or restrictions to the 
Markowitz model. Yoshimoto investigated a multi-period portfolio selection problem with 
transaction costs based on the Markowitz model [13]. Kono (2001) proposed a new algorithm 
to solve portfolio optimization model with regards to transaction costs and minimized trading 
volumes [14]. 

 
 

3.2 Model solution 
 
For solving models, Arnone presented the simulated annealing algorithm for the non- 
constrained optimization problem [15]. However, Shoaf applied this algorithm on the 
Markowitz model without any further constraint for the first time [16]. Furthermore, Rowland 
used the TABU search algorithm to solve the model [17]. 

In the early 1900's, several studies found out more functions for meta-heuristic 
algorithms to solve portfolio selection problems. In order to present better efficiency of such 
algorithms, Khia and the colleagues (2000) [18], Arito and the colleagues (2003) [19], 
Fidsand and the colleagues (2004) [20] and Lai and the colleagues (2006) [51]; also Chang 
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and the colleagues [22] investigated a wide range of meta-heuristics, including TABU search, 
gradual freezing and simulated annealing algorithms to solve the portfolio selection model 
without trading volume and business turnover constraints. Chang and the colleagues achieved 
to the best approximation of the simulated annealing algorithm at a non-constrained frontier; 
however, they could not develop a meta-heuristic instance better than others.  Scarf first 
improve Chang's paper [23], and then proposed a TABU search algorithm as a solution for 
Markowitz's model [24]. Lin and the colleagues (2001) evaluated a multi-objective simulated 
annealing algorithm for portfolio selection problem [25]. By applying the gradual freezing to 
solve the model with investment return constraint [26], kerma and the colleagues introduced a 
new portfolio selection algorithm based on Beta portfolio by considering investment sectors. 
He chose the simulated annealing algorithm to solve his model [27]. Stein extracted several 
meta-heuristics algorithms for the Markowitz model [28].  Trends to the Markowitz model 
and its solution by meta-heuristic algorithms continued until 2007. Lin and Liu (2007) 
assessed the model through minimizing trading volume and presented three additional 
models. They also used the genetic algorithm to solve their proposed models [29].  

 
 

4 The Proposed Model  
 
In early 1950's, Harry Markowitz founded a basic portfolio model portfolio on which the 
modern portfolio theory is based. He was the first who developed the concept of 
diversification for the investment basket generally, and for portfolio in particular, in a formal 
manner. He quantitatively showed that why and how investment risk could be reduced by the 
diversification for investors.  In order to extend his model, Markowitz presented some basic 
assumptions; investors 1) are interested to return and insensitive to risk, 2) to make decisions 
have rational behavior, and 3) decide based on their maximized utility. Hence, an investor's 
utility is a function of risk for expected return, two major parameters in investment decisions. 
Markowitz's model is based on relationships between these two necessary variables, i.e. risk 
and return.  

In his initial model, Markowitz assumed that investors' main objective was to maximize 
return rates for a given amount of risk or to minimize risks for a given level of return. 
Typically, a decision maker considers a fixed rate of return and, then, minimizes portfolio risk 
under return constraint. So the Markowitz model can be modeled as a quadratic programming 
problem as the following [7]:  

 
Where,  
݊ = number of stocks 
r୮= expected rates of return on investment 
  required rate of return =ݎ 
r୧= expected rates of return on stock i 
δ୧୨= covariance between the returns on two stocks ݅ and ݆ 
δ୮

ଶ= portfolio return variance 
w୧= investment-capital stock ratio. 
 

According to the Markowitz model, the portfolio risk depends on three different factors: 
variance of individual stock, covariance between stocks, and weights (percentage of invested 
funds) given to a single stock. Hence, the portfolio risk includes not only a single stock risk 
(variance), but also the covariance between two stocks. "Covariance" may have the same 
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importance as integration of individual stock risks. When a stock is added to a portfolio, 
therefore, the mean covariance between that stock and the others available in the portfolio will 
be of more importance than its risk.  

As stated before, the expected value of the stock desired is one of the portfolio selection 
criteria. In order to evaluate this criterion, the stock price to return ratio, presented by ܲ/ܧ  , 
is considered. Generally, to select a more suitable portfolio, stocks should be chosen such that 
total ܲ/ܧ ratio will be low; however, according to the above-mentioned descriptions, a low 
 based investment strategy will not show a high degree of confidence. Furthermore, the- ܧ/ܲ
 ratio varies in time, so a low ratio selection strategy should be applied carefully. The ܧ/ܲ
reason is that such ratio is affected by the business cycles and interest rates. However, the 
 ratios for various industries depend on the type of industry. For industries with fast ܧ/ܲ
growth and high technology, for example, a high  ܲ/ܧ  is common. On the contrary, financial 
institutions rarely offer such ratio. In other words, companies active in young and new 
industries which have fast growth provide a higher ܲ/ܧ ratio, because their profit growth are 
rarely maintained; on the other hand, companies active in matured industries which have 
lower growth provide less ܲ/ܧ.(Rau and Vermaelen 1998) 

Given the above description and shortcomings of the low ܲ/ܧ -based investment 
strategy, the present study tried first to classify the stocks based on a low ܲ/ܧ ratio, then 
applied some constraints in order to maximize profitability. Among such constraints for the 
initial model is that portfolio stocks are selected from different industries. Numbers of 
industry must be greater than the minimum level predetermined for the model. This reduces 
impact of different parameters affecting on low ܲ/ܧ stock strategy such as bank interest, 
industry types and so on; resulting in a portfolio more safe and close to the real world. The 
model is given as below formula:  

As seen, equation (4) is the objective function minimizing selection risk. Equation (5) 
ensures that the total investment to fund ratio is equal to 1. Equation (6) guarantees minimum 
profit return. Equation (7) ensures that K number of stocks is exactly places in the portfolio 
offered. Considering equations (8); if stock ݅  is placed in the portfolio, then the binary 
variable z୧ will equal to 1, and otherwise to 0. Considering equation (9); If no part of the ݆ is 
selected, then z୧ will be 0, also y୨୧ is 0. However, even if a portion of the ݆ is selected, y୨୧ must 
be greater than 0. (Indeed, it must be greater than ୵౟

୑
), it will be equal to 1 because it is a 

binary variable.  
In other words, when some stocks are selected from different groups, then total weight of 

each batch invested in those groups should be relevant to its investment sector. A group with 
higher investment priority, if stocks selected from, should have more stock share in the final 
portfolio. Therefore, the important note is that the temporal constraint is failed when no stock 
from a group is selected.  For example, when group# 1 has more profitability than group#2 
and there are available stocks from both, then the first group achieves a total weight greater 
than the other. However, if no stock from this group (#1) is placed in the portfolio, then the 
constraint would be failed. Equations (10) and (11) clearly show this. Equation (12) meets 
investment constraint for minimum investment group G.  
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5 An electromagnetic algorithm as model solution  
 
This section deals with the solution of the proposed model using the new meta-heuristic 
electromagnetic algorithm. First, the algorithm is introduced with the implementation steps. 
Next, the model solution and data analysis will be discussed.  
 
 
5.1 Electromagnetic algorithms introduction  
 
Electromagnetic algorithm is used to solve optimization problems. The algorithm utilizes the 
attraction - repulsion characteristics of charged particles. In this algorithm, each answer is 
considered as a charged particle. Particles with better objective functions have more charges, 
so they can attract other particles. Consequently, particles with low optimization repulse other 
particles. The main idea of the algorithm is that better position may be found around good 
points. So, weak points are moved toward optimal points [30]. 

Heuristic electromagnetic algorithm consists of four steps; primary population 
production, local search, force vector calculations, and displacement toward the force vector 
applied and using a local search in neighborhood to achieve local optimization. Following is a 
brief review of the steps [31]. 

 
 

5.1.1 Procedure to Produce Primary Population  
 
The procedure for primary population production is used to generate point ݉ in a possible 
space where each point has ݊ dimensions and each dimension must be located within high and 
low limits of that point. When a point obtained in the space, its objective function is 
calculated. By determining all points and retaining the point with best objective function in 
xୠୣୱ୲, the function will come to an end.  
 
 
5.1.2 Local search  
 
Local search procedure includes local data collection around the point x୧. Parameters 
 and δ applied here represent frequency (the number of iteration) and diffusion ܴܧܶܶܵܮ
coefficient in the neighborhood, respectively. 
 
 
5.1.3 Total force vector calculation  
 
Electromagnetic Superposition principle states that the force applied on a point from other 
points has an inverse relationship with distance between points, while having a direct 
relationship with their charges. For iteration, points' charges are measured through their 
objective functions. In the current heuristic approach, points' charges vary in each step. 
Charge level of point ݅ determines his attraction or repulsion power, given as below:  

Thus, points with better objective functions will also have more charges. ݊ 's coefficient 
as problem dimension is applied on the fraction; since for greater dimensions which need 
more points, the fraction may be so small, resulting in difficult calculation of charge.  So this 
application prevents such a difficulty. Unlike real charges, here the charges have no sign. 
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Rather, charge direction between two given points is determined based on their objective 
functions.  Therefore, total force vector F୧ applied on point ݅ is calculated as below:  

As it is obvious, between two points, that point with better objective function attracts 
other point. In contrast, a point with worst objective function repulses the other. Since point 
xୠୣୱ୲ has the lowest objective function, this points acts as an absolute attraction point and 
attracts other points in the population.  

 
 

5.1.4 Displacement toward total force vector  
 
When total force vector F୧୨ calculated, point ݅  moved by random step lengths, directed to the 
force vector. Here, random step length,  λ , is supposed to have a uniform distribution between 
0 and 1. Different distributions can be considered for step lengths; however, to simplify 
calculations and programming, a uniform distribution function is used. Step lengths are 
selected randomly in order to make all space movement possible. For equation (15), vector 
 causes movements done in a possible space and dimensions move in their high and low ܩܴܰ
limits. In addition, forces applied on the points are normalized; this provides points' stability 
in the possible space:  

Note that there is no displacement for the best point xୠୣୱ୲, without any change it transfers 
to next step. In order to reduce program time, therefore, calculating the force applied on xୠୣୱ୲ 
can be ignored.  

Here, electromagnetic algorithm ends. In next sections, some modifications are conducted 
on the algorithm in order to solve the portfolio selection problem. 

 
 

5.2 Algorithm implementation  
 
Based on the provided model and the algorithm steps described above, it is the time to solve 
the problem. First, samples are considered as the vector1 ∗ ݊, where ݊ is total numbers of 
shares. Equal to stocks selected, positive values (between 0 and 1) are allocated to the vector 
elements that represent investment percent for the stock desired. Furthermore, the sum of 
these positive values will be equal to 1; as the following example:  
 
[0.00, 0.00, 0.45, 0.00, 0.20, 0.10, 0.00, 0.20, 0.00, 0.05] 
 
where total number of stocks is 10, and total stocks of portfolio are 5. In this algorithm, 
number 10 is the constraint for stocks to be invested. Initial answers are also randomly 
chosen. When an initial answer generated, next step begins; i.e. the local search. This step 
improves available answers, without replacing the portfolio stocks with alternatives. The 
operation is applied only on the weights. It must be conducted in such a way that the possible 
space is maintained, while changing answers to relatively improve them. On the other hand, 
due to grouping constraint, if stocks are selected from a group, then the sum of stock weights 
in that group should be greater than in lower groups. In order to fulfill this constraint, 
therefore, initial answers are multiplied to dimensions of portfolio stocks to obtain the best 
answer in a square matrix. The result would be an answer set with possible goodness more 
than previous ones. Following criteria is considered for the matrix with regards to possibility 
of initial answers:  
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- The sum of coefficients must be constant (equal to 1); 2- Grouping constraint is not 
violated.  

 
For this, the square matrix must be under the following conditions:  

- Sum value of counts in each row equals 1. 2- count weights in each row must be 
descending from left to Right.  

- In order to update the matrix used for local search, two or more rows can be changed 
or replaced by new row.   

 
 
5.3 Computational result  
 
Before evaluating answers obtained from the electromagnetic algorithm, the algorithm 
application to solve the portfolio problem is firstly compared between the Markowitz and the 
present models. Note that values of parameters and some controlled variables must be 
determined. The problem parameters are number of initial answers, local search, and number 
of iterations; while the control variable only is number of shares selected by an investor. To 
achieve proper values, a nominal example is used to calculate optimal values based on which, 
then, a real problem is solved.  
 
 
5.3.1 Initial population 
 
Obviously, more numbers the initial samples have; more accuracy the answers have. 
However, increased initial population results to an increase in algorithm implementation time. 
So, it is necessary to make a balance between implementation time and implementation 
accuracy (number of initial answers). To do this, efficiency of different numbers for initial 
population is evaluated with a given stock number in each iteration. The following diagram 
shows the effect of initial population on the objective function in a problem consisting of 15 
stocks and 100 iterations, indicating that the optimum number for the initial answer equals to 
40 stocks.  

 
 
Fig.  1 Optimum Conditions for Initial Population 
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Effect of the availability or lack of local search: To evaluate impact of local search in the 
algorithm, three modes of 10, 30 and 50 are provided for the initial population. Ultimately, 
local search efficiency on algorithm implementation is proved.  
 
Table 1. Comparative Results for Algorithms with and without Local Search; Objective 
Function at Scale of 1*1000  

Considering to relatively optimal calculation for each parameters, optimal values for the 
parameters can be achieved through a comprehensive and integrated testing method. For this 
purpose, the below table is formulated:  
 
Table 2. Optimal Solution for Optimal Parameters of Proposed Algorithm 
According to computations result, the best condition for algorithm parameters includes 40 
stocks for initial population, 50 numbers for iteration, with availability of local search 
constraint. Note, portfolio stock number is considered by 5.   

Effect of the number of stocks selected by an investor: as described for the Markowitz 
model, the main reason to develop a portfolio is to minimize investment risk by adding those 
stocks with low or inverse coefficient of positive correlation related to available stocks. It is 
expected that increased portfolio stocks leads to decreased portfolio risk, or at least to non 
high increase. The following diagram shows the results:  

 

 
Fig. 2 Variations in Portfolio Risk resulted from Changes of Portfolio stock Number at Scale of 1*1000 
 
 
As seen from Diagram 2, the optimal condition for the portfolio stocks is 5.  
 
 
5.3.2 The computational result 
 
The number of shares discussed in the paper is 50. The Stock Exchange was considered as an 
elite reference for selecting stocks. Sample includes stocks of 50 active or top companies 
introduced by the Stock Exchange. Relevant data was gathered from the official website of 
the Tehran Stock Exchange (http://www.tsetmc.ir).  

A software was designed to be used for collecting and analyzing data, as well as for 
computing input data. This software can receive data directly from the website as xml files 
(http://ww2.tsetmc.com/WebService/TsePublic.asmx), and then automatically calculates 
algorithmic input data including monthly and total (annual) return rates for each stock, and 
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covariance between stocks. The software was programmed in .NET environment in C#. As 
stated earlier, the proposed model was investigated in two steps. First, the model was 
compared with the Markowitz model by using the electromagnetic algorithm. Computational 
result is represented at the following table:  

 
 
Table 3 Best Objective Function obtained from Proposed and Markowitz Models (Scale of 1*1000) 
 

Based on the first half of 
 year 1388 Based on year 1387   

Rate of Return Rate of Return Risk (objective 
function)  

0.29 0.43 0.53 Proposed Model 

0.21 0.26 0.58 Markowitz 
Model 

 
As seen from Table 3, Implementing the Markowitz and proposed models on data for period 
(March, 21th -Sep. 21th, 2009) shows a better return rate for the proposed model.  
Table 4 List of Companies Used for Portfolio Stocks and Proposed Model  
 

Markowitz Model Proposed Model  

Company Name Security 
Weight Company Name Security 

Weight Industry Group 

Iran Khodro Dizel 0.33 Zamyad 0.22 Automotive and Parts 
Manufacturing 

Sanaye Joushkabe 
Yazd 0.87 Iran Khodro Dizel  0.27 Automotive and Parts 

Manufacturing 

Kimi Daroo 0.06 Tolide Tajhizate 
Sangine Hepco 0.1 Machinery and 

Equipment 
Foolade Amir 
Kabire Kashan 0.49 Sina Bank 0.12 The Banks and Credit 

Institutions 
Mese Shahid 

Bahonar 0.02 Alborz Daroo 0.27 Pharmaceutical 
Products 

 
 
Table 5 Number of Stocks and Investment Rates of Groups 
 

Security Number After 
Ranking Based on P/E 

Investment 
Portion in 
Industries 

Group 
Number  

4 0.606 1 

Proposed Model 
5 0 2 
7 0 3 
36 0.393 4 
37 0 5 
5 0.33 1 

Markowitz's 
Model 

12 0.087 2 
23 0.059 3 
44 0 4 
46 0.51 5 
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5.4 Comparison of Proposed Electromagnetic and Simulated Annealing Algorithms 
 
The efficiency of the proposed model was obtained against the Markowitz model. Now, 
another meta-heuristic approach, namely the simulated annealing algorithm, is used to solve 
the problem.  

Simulated annealing algorithm is a meta-heuristic local search method for problem 
optimization. This method is mostly applied for discrete optimization problems, rather than 
continuous ones. An important feature is that this method provides useful means to ignore 
local optimal points, and find a general optimal one by accepting worse solutions with a given 
level of probability. Structure of this algorithm was first developed by Kirk and the colleagues 
in 1983[32]. Freezing phenomena was the main idea for this method, aimed to reduce material 
temperature to lowest energy level. In freezing process, material with an initial temperature is 
slowly cooled and the cooling process stops at a final temperature. So, material energy level is 
gradually decreased and ultimately stopped. Patrick used such energy level as a value for 
objective functions in different problems.  

The purpose of this section is to compare the electromagnetic and simulated annealing 
algorithms in terms of problem solution in order to prove first's priority over the latter. 
Obviously, due to different operational steps in each algorithms and different procedures to 
produce primary populations, it seems irrational to compare the algorithms in terms of 
iterations. Consequently, we tried to compare problem answers during a same period time of 
implementation.  

The general procedure in simulated annealing algorithms is shown as the following 
figure.  

 

 
Fig.  3 Simulated annealing algorithm 
 
 
At below, the problem solution is discussed about the simulated annealing algorithm.  
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As mentioned before, the stock selection constraint is 5. For algorithm SA, the initial 
answer is selected among 5 stocks with much greater yield rate in the current year. Note, a 
proper initial answer will have a significant effect on the convergence rate. Similarly, the 
neighborhood process is also important. In order to create a new neighborhood, a criterion is 
first determined for each stock; this is the ratio of return rate to the variance of each stock. 
Naturally, the higher the rate is, the higher the expected dividend is in the long term. 
According to the description mentioned, the ratio is calculated for each portfolio stock based 
on which, then, the stocks are arranged in descending order from 1 to 5. A selection 
probability is allocated to stocks according to their ranks. A stock in third rank, for example, 
is selected by a probability of 0.2 (3/15 = 0.2) as withdrawing sock. It is clear that the 
possibility of withdrawing each share is proportional to its rank. Next, stocks entering to 
portfolio are randomly selected among other available stocks.  

The initial value of system temperature exerts a direct impact on acceptance or failure of 
answers. Since for high system temperature, the system energy is also high; this is a desired 
condition to obtain a best temperature reduction method for in order to achieve a steady-state 
system. When the initial temperature is low, worst answers have less probability to accept and 
the system may remain in the local optimum. White (1984) presented the idea of initial 
temperature equality to the standard deviation of system costs from the average costs [33]. As 
he stated, initial temperature put in equal to the standard deviations of objective values per 
times of program implementation in a non-steady states where OBJ(j) is the value of objective 
function in terms of the answer j.  

Standard criteria for temperature reduction and cooling the system are given as the 
following function;  

With regards to problem aspects, it should be mentioned that the coefficient ߙ is 0.9. In 
addition, stopping criteria is necessary to define. As stated before, algorithms are to be 
implemented in the same period time in order to make comparison possible, because of their 
differences and irrational comparison. Therefore, stopping criteria is not defined for the 
algorithm, and it continues indefinitely unless a pre-determined period ends.  

 
 

Table 6 Comparison of Proposed and Simulated Annealing Algorithms 
 

Average Number 
of Iterations 

Solutions 
Variance 

Solutions 
Average 

Best Objective 
Function   

EM SA EM SA EM SA EM SA Time 
(Seconds) 

Initial 
Population 

17 723 0.3 0.69 1.76 2.24 1.12 1.25 10 

30 36 1482 0.28 0.34 1.69 1.87 1.02 1.12 20 

48 2430 0.23 0.14 1.62 1.71 0.95 1.01 30 

11 647 0.28 0.45 2.11 2.18 1.1 1.24 10 

40 20 1363 0.24 0.3 1.84 1.86 1 1.01 20 

27 2284 0.21 0.22 1.75 1.69 0.83 0.98 30 

8 532 0.26 0.31 2.12 2.15 1.08 0.18 10 

50 14 1212 0.2 0.26 1.83 1.83 1.01 1 20 

19 1994 0.21 0.22 1.77 1.65 0.84 0.93 30 
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As found from Table 6, the proposed model provides a better performance, compared to the 
simulated annealing algorithm. Low variance for answers obtained from the proposed model 
indicates the same answers in each iteration. In other words, such answers show low 
deviations from the average answers through iterations, unlike the simulated annealing 
algorithms.  

For the proposed algorithm, the main strong feature is to produce an optimum population 
in less iteration times. Table 7 compares the proposed and simulated annealing algorithms in 
terms of variations in the average objective function for present and new populations. Result 
shows that the proposed algorithm has best capability to achieve an optimum population 
through small numbers of iterations. Hence, it can be used as a combining algorithm to obtain 
a relatively optimal population through less iteration numbers. Note that the software used 
here is designed so that each algorithm can apply the population offered by other algorithm 
with any iteration desired.  

 
 
Table 7  Variations in Population Objective Function resulted from Proposed and Simulated Annealing 
Algorithms 

Average of New Population 
Objective Function    

EM SA Time 
(Seconds) 

Average Current 
Population 

Initial 
Population 

3.93 25.34 10 
53.89 30 

2.7 19.87 20 

2.45 28.75 10 
56.21 40 

2.19 21.03 20 

3.5 24.69 10 
55.98 50 

2.86 19.34 20 
 
 
6 Conclusions  
 
In the present study, a new model was extended based on the Markowitz model. In general, 
for portfolio problems, stocks were selected so that they have less risk, while obtaining a 
given profitability. Extension of the basic model and variations in solution space due to 
additional constraints led to a discrete and non-convex space. Therefore, the meta-heuristic 
electromagnetic algorithm was used to solve the problem. The solution process was 
conducted as the following: stocks were first arranged ascending according to the price to 
income ratio variable. Then, stocks were divided into five groups, as the highest group had the 
lowest price to income ratio, and vice versa. The applied constrain indicated that when one or 
more stock were selected from high groups, the sum of stocks in that group should be greater 
than in lower groups. Such modeling made it possible to select stocks from different 
industries, ensuring to pursuit the stock selection strategy with lowest price to income ratio. 
Finally, the proposed and Markowitz models were solved in order to evaluate efficiency of 
the present model. When the efficiency determined, two methods were discussed, including 
electromagnetic and simulated annealing algorithms. Computational result indicated a better 
efficiency for the electromagnetic algorithm to solve the problem.  
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