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Abstract  In this paper, we consider a flow shop scheduling problem with availability constraints 
(FSSPAC) for the objective of minimizing the makespan. In such a problem, machines are not 
continuously available for processing jobs due to preventive maintenance activities. We proposed a 
mixed-integer linear programming (MILP) model for this problem which can generate non-
permutation schedules. Furthermore, an improving heuristic method and a genetic algorithm (GA) 
based heuristic are developed to evolve optimal or near optimal solutions. To obtain better and more 
robust solutions, The Taguchi method is performed for tuning the parameters of genetic algorithm. 
The MILP model can be used to compute optimal solutions for small-sized problems or to test the 
performance of solution algorithms. The presented methodology is evaluated for the solution quality. 
According to computational experiments, the GA can reach good-quality solutions in reasonable 
computational time, and can be used to solve large scale problems effectively. 
 
Keywords: Flow Shop Scheduling, Availability Constraint, Mixed-Integer Linear Programming, 
Improving heuristic, Genetic Algorithm, Taguchi Method.  
 
 
1 Introduction 
 
Production scheduling is one of the most important tasks carried out in manufacturing 
systems which can be defined as the allocation production resources over time best to satisfy a 
pre-set criterion and seeks goals such as optimal sequence of jobs on machines, balanced 
machine utilization rate, and short average customer waiting time [1]. 

Scheduling and maintenance planning have separately received considerable attention in 
operations research literature and both of domains are successfully studied from theoretical 
and practical view. But, combining of scheduling and availability constraints has received 
much less attention. In this area it is usually assumed that machines and processors are 
continuously available during the whole planning horizon. However, in many real situations, 
machines may be unavailable due to breakdowns or preventive maintenance (PM) activities 
[2, 3]. The primary goal of preventive maintenance actions is to prevent the failure of 
equipment before it actually occurs. It can retain or restore a system to an acceptable 
operating condition. Although PM activities take time that could otherwise be used for 
production, delaying them may increase the probability of machine failure [4]. Therefore, 
combining scheduling decisions and preventive maintenance plans is necessary to achieve a 
global plan for real manufacturing systems. 
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Ma et al. [5] provided a thorough survey on deterministic scheduling problems with 
machine availability constraints. Albers and Schmidt [6] proposed an optimal algorithm if the 
next point in time where the set of available machine changes is known. Scheduling and 
preventive maintenance problems can be classified according to the shop environment. In this 
area, some works are related to the single machine problem (for instance see [4, 7, 8]). Zhao 
et al. [9] studied two parallel machines scheduling problem with an availability constraint 
where only one machine is unavailable in a fixed and known time period. They presented a 
fully polynomial-time approximation scheme for the problem to minimize the total weighted 
completion time. The two-machine flow shop scheduling problem (FSSP) with availability 
constraint is first studied by Lee [10]. He proved that this problem with an availability 
constraint only on one machine is NP-hard. Kubzin and Strusevich [11] studied a two-
machine flow shop no-wait scheduling problem with maintenance. They presented a 
polynomial-time approximation scheme to solve this problem considering makespan as an 
objective function. Liao and Tsai [12] proposed heuristic approaches to minimize makespan 
in a two-machine flow shop with availability constraints. Hadda [13] considered two machine 
flow shop scheduling problem with several availability constraints where only the first 
machine is unavailable. He presented a polynomial-time approximation scheme for the 
problem, under the resumable scenario, to minimize the makespan. Zhao and Tang [14] 
studied two-machine no-wait flow shop scheduling with deteriorating jobs and machine 
availability constraints with makespan minimization. They assumed that there are 
unavailability intervals on only one machine. Ben Chihaoui et al. [15] studied the two-
machine no-wait flow-shop scheduling problem, when every machine is subject to one non-
availability constraint and jobs have different release dates. They proposed a branch-and-
bound algorithm to solve the problem. 

In this research, we consider a general flow shop scheduling problem with availability 
constraints that is not restricted by the number of machines. Benbouzid-Sitayeb et al. [16, 17] 
considered joint production and preventive maintenance scheduling problem in permutation 
flow shop. They proposed several meta-heuristics such as genetic algorithm [16] and ant 
colony optimization [17] for solving this problem and they compared obtained results for 
optimality. The goal of these papers is to optimize an objective function which takes into 
account the criteria of maintenance and production at the same time. Ruiz et al. [18] provided 
tools in order to implicitly consider different preventive maintenance policies on machines in 
the permutation FSSP environment. The optimization criterion considered consists in 
minimizing the makespan. They evaluate six adaptations of heuristic and meta-heuristic 
methods for the consideration of preventive maintenance. Aggoune et al. [19] investigated a 
flow shop problem with availability constraints and proposed a heuristic based on genetic 
algorithm to solve the makespan and the total weighted tardiness minimization problems. 
They considered two variants to deal with the maintenance activities: either starting time of 
the maintenance tasks are fixed or the maintenance tasks must be performed on a given time 
window. Aggoune [2] also developed a heuristic based on genetic algorithm and tabu search 
for this problem to solve the makespan minimization. Later, Aggoune and Portmann [20] 
presented a temporized geometric method for solving the problem with two jobs. Perez-
Gonzalez and Framinan [21] considered a permutation flow shop problem with the 
assumption of machine availability constraint at the beginning of the period. They developed 
a number of quick heuristics in order to solve this problem. Safari and Sadjadi [22] considered 
the flow shop scheduling problem with the condition-based maintenance for minimizing the 
expected makespan. To solve the problem, they used a hybrid algorithm based on the genetic 
and simulated annealing algorithms. Shoaardebilia and Fattahi [23] considered multi-
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objective three-stage assembly flow shop scheduling problem with machine availability 
constraints. They implemented multi-objective meta-heuristics are presented to solve the 
problem with Two performance measures including minimizing total weighted completion 
times and sum of weighted tardiness and earliness. Vahedi-Nouri et al. [24] investigated flow 
shop scheduling problem with tow practical condition including learning effects and machine 
availability constraints to minimiz the total flow time as a performance measure. They 
proposed a heuristic to solve the problem that is able to find non-permutation solutions. 

Allaoui and Artiba [3] considered the two-stage hybrid flow shop scheduling problem to 
minimize the makespan criterion under maintenance constraints. There are only one machine 
on the first stage and m machines on the second stage in the considered shop. A branch-and-
bound algorithm is presented and the performance of three heuristics is evaluated. Besbes et 
al. [25] developed an approximate approach based on genetic algorithm for hybrid flow shop 
scheduling problems under availability constraints with the makespan minimization as the 
objective function. Allaoui and Artiba [26] studied hybrid flow shop scheduling with 
availability constraints to minimize makespan. They developed a branch and bound algorithm 
to solve the two-stage hybrid flow shop. Wang and Liu [27] considered a bi-objective 
integrated production scheduling and preventive maintenance with non-resumable jobs in a 
two-stage hybrid flow shop. They considered sequence-dependent setup and preventive 
maintenance on the first stage machine. Due to the complexity of the problem, a multi-
objective tabu search algorithm is adapted to solve the problem. 

The aim of this paper is to successfully formulate integrated scheduling and availability 
constraints for the flow shop problem. We present a MILP model for this problem that can 
generate non-permutation schedules. A GA based heuristic is also proposed to evolve optimal 
or near optimal solutions. It is possible to obtain optimal solutions for small-sized problems 
using the MILP model using optimization solver. In addition, it helps to test the performance 
of presented meta-heuristic algorithm by comparing the results.  

The remainder of the paper is organized as follows: In section 2 we present proposed 
MILP model for FSSP with availability constraints. Section 3 contains the scheduling 
approach to determine sequence of jobs and PM tasks. Section 4 describes the genetic 
algorithm for solving our proposed model. Section 5 presents the computational results 
acquired and, finally, Section 6 provides conclusions and suggestions for further researches.  
 
 
2 Mathematical formulation of FSSP with availability constraints 
 
In this section, a proposed MILP for FSSPAC is presented. A n-job, m-machine, Li-PM Task 
non-permutation FSSPAC with minimized makespan (Cmax) as the objective can be presented 
using the classical notation F|availability constraints|Cmax [28]. In the flow shop scheduling 
problem (FSSP), there are a set of jobs that have to be processed on a number of sequential 
machines. Each job has to be processed on all machines and the processing routes of all jobs 
are the same i.e., the operations of any job are processed in the same order. The job sequence 
of each machine has to be identified to minimize (or maximize) a specific performance 
measure (usually minimizing the makespan or total flow time). In the permutation FSSP, all 
jobs must enter the machines in the same order, while in non- permutation (general) FSSP, 
jobs can have different sequence on each machine. 
Hypotheses considered in this paper are summarized as follows: 
 All n jobs to schedule are independent. 
 Jobs have no associated priority values. 
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 One machine can process at most one job or PM task at a time.  
 Each job is processed on at most one machine at a time.  
 No more than one operation of the same job can be executed at a time. 
 Scheduled maintenance is allowed (Machine is not available at all times). 
 Each maintenance task has a predefined time window, in which the completion 

time of the task can be moved within (Each PM task has to be completed within 
its pre-specified time window). 

 When a PM task is performed on a machine, no operation can be processed on 
that machine. 

 Processing of each job cannot be started before its release time. 
 The setup time for the operations is sequence-independent and is included in the 

processing time 
 Preemption and splitting of any particular job is not allowed: a job, once started 

on the machine, continues in processing until it is completed. 
 There is no travel time between stages; jobs are available for processing at a stage 

immediately after completing processing at the previous stage.  
 Jobs are allowed to wait between two stages, and the storage is unlimited. 
 All programming parameters are deterministic and there is no randomness. 
 There is only one of each type of machine.  

 
The notation used in this paper is summarized in the following: 
Indices 

i:   Index of machines, i = 1, 2, . . . , m; 
j,h:   Job index of jobs,  j,h  = 1, 2, . . . , n; 
l:   Index of maintenance tasks, l = 1, 2, . . . ,Li; 

Parameters 
n:   Total number of  jobs; 
m:   Total number of  machines; 
Li:   Total number of preventive maintenance tasks on machine i; 
PMil:  The lth preventive maintenance task on machine i; 
tij:   Processing time of job j on machine i; 
pil:   Duration of the maintenance task PMil;  
Rj:   Release date of job j; 
M:   Large constants (M→∞); 
EMil:  The early completion time of the maintenance task PMil; 
LMil:  The late completion time of the maintenance task PMil; 

Decision variables 
Sij :  Starting time of job j on machine i; 
Cij :  Completion time of job j on machine i; 
FMil:  Completion time of the maintenance task PMil; 
Yihj:  A binary variable that is equal to 1 if job j is processed after job h when processing on 
machine i, 0 otherwise; 
Zijl:  A binary variable that is equal to 1 if job j is processed before maintenance task l when 
processing on machine i, 0 otherwise; 

In this study, we manage to minimize the makespan criterion (Cmax). Proposed model is given 
as follows: 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ao
r.

co
m

 o
n 

20
25

-0
5-

24
 ]

 

                             4 / 16

http://ijaor.com/article-1-434-en.html


MILP Formulation and Genetic Algorithm for Non-permutation Flow Shop Scheduling Problem with Availability Constraints 15 

(1) maxCzMin   
(2) jCC mj  ;max  

(3) njmitSC ijijij ,..,1,,...,2;   

(4) njmiCS ijji ,..,1,1,...,1;)1(   

(5) hjiMYCS ihjihij ,,;)1(   

(6) hjiMYCS ihjijih ,,;   

(7) ljiMZFMtC ijlilijij ,,;0   

(8) ljiMZCpFM ijlijilil ,,;0)1(   

(9) liLMFMEM ililil ,;   
(10) jRS jj  ,1  
(11) lhjiZY ijlijh ,,,},1,0{,   

 
The objective function (1) considers the minimization of the makespan. The constraint set (2) 
ensures that the makespan is equal to the maximum completion time of any job. The 
constraint set (3) corresponds to the computation of the completion time of job. The constraint 
set (4) forces to start the processing of each job only when it has been completed on the 
precedent machine. The constraint sets (5) and (6) force to start the processing of each job 
only when its precedent job has been completed on the same machine.  Preventive 
maintenance is a set of preplanned actions performed to prevent the potential failure of 
equipments before it actually occurs. On each machine if a job is processed before/after a 
maintenance task then the finish/start time of that job must be less/greater than the 
maintenance start/finish time which are mentioned in the constraint sets (7) and (8). The 
constraint set (9) ensures that a maintenance task is performed in the corresponding time 
window. The constraint set (10) bounds the job starting times to be after job release times in 
the system. The relation (11) is a logical constraint. 

Consider a FSSP with two machines, four jobs and two maintenance tasks on machine 1 
and one maintenance task on machine 2. The processing times of jobs on machines and other 
required data are given in Table 1. The optimal sequence of jobs and maintenance tasks on 
machines for minimizing the makespan is illustrated in Figure 1.  
 
 
Table 1. Processing times, PM times and other data 

  Job Preventive maintenance 
  1 2 3 4 pi1 pi2 EM1 LM1 EM2 LM2 

Machine 
1 3 5 6 4 2 1 5 7 19 21 
2 5 4 6 3 2 -- 20 22 -- -- 

Release time 2 7 5 4 
 
 

 
Fig. 1 Optimal solution for data set of Table 1 (Makespan=28)  
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3  Scheduling approach 
 
There are two strategies to plan joint production scheduling and preventive maintenance in the 
literature [29]. The first strategy consists of two steps: First the scheduling of the production 
jobs then the insertion of the maintenance tasks. The second one consists of simultaneously 
scheduling both maintenance and production activities. 
To schedule job and maintenance sequencing an approach similar to the first strategy is 
adapted in this paper. First, maintenance tasks are assigned to the corresponding time 
windows then jobs are inserted in the free periods of time between maintenance tasks. It is 
due to the fact that maintenance tasks must be performed in a given time window. 
To assign a maintenance task in a given time window, three ways could be used: 

 The late completion time of the maintenance task PMil is considered as the completion 
time of PMil (FMil = LMil). 

 The early completion time of the maintenance task PMil is selected for the completion 
time of PMil (FMil = EMil). 

 Completion time of the maintenance task PMil is assigned in a given time window, 
randomly. 

When Li maintenance tasks are assigned to machine i, planning horizon of machine i is 
decomposed on (Li+1) subintervals. In this paper, to schedule a joint production and 
preventive maintenance problem, first, completion time of maintenance tasks are fixed on 
machines using one of the above-mentioned methods, then all jobs are assigned to the feasible 
subintervals according to the predefined job sequence. Feasible subintervals on a machine for 
assigning a job is determined with considering the precedence constraint and also the fact that 
the length of a subinterval have to be greater than processing time of the job on the machine. 
Note that after each insertion the length of the concerned subinterval is updated. For instance, 
consider job j to be assigned in the subinterval of PMi,l+1 and PMil and job j must be processed 
immediately after job h on machine i. The subinterval is feasible, if {min (FMi,l+1 – pi,l+1 - 
FMil, FMi,l+1– pi,l+1 – Cih, FMi,l+1– pi,l+1 –Ci-1,j) ≥ tij }. If the constraint is not satisfied, next 
subinterval is checked until a feasible one is found. Finally, when the sequence of all tasks is 
determined, the maintenance tasks and operations are left-shifted as much as possible. 

For example, let us consider example of section 2. Assume that {1, 3, 2, 4} is the job 
sequence on two machines and first method of PM assigning (FMil = LMil) is selected. The 
procedure of scheduling approach is illustrated in Figures 2 and 3. 
 

 
Fig. 2 Solution for data set of Table 1 before using left-shifting (Makespan=29) 

 

 
Fig. 3 Solution for data set of Table 1after using left-shifting (Makespan=28) 
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4 The solution methods 
 
Since the problem is strongly NP-hard, solving it with exact methods such as branch and 
bound will be costly and time consuming. For the small size problems, the presented MILP 
model is solved using the Lingo software. In order to obtain close-to-optimal solutions at a 
reasonable time, an improving heuristic method and a genetic algorithm are presented. 
 
 
4.1 The proposed heuristic method 
 
The proposed heuristic is an improving method that is begun with a good permutation 
solution and this solution will be improved in the next steps with obtaining a non-permutation 
schedule, hereafter called NP-heuristic. The steps of the NP-heuristic are described in Figure 
4. 
 

The procedure of NP-heuristic 
1. The finish time of all maintenance activities on machines is considered 

to the latest possible completion time. 
2. An initial solution with permutation structure is generated by NEH 

heuristic [30] with the consideration of maintenance activity and the 
objective function of this solution is considered as the best known 
solution. 

3. For i = 1 to m 
       For j = 1 to n 
  For k=1 to n & k ≠ j  
   The start time of every maintenance activity is shifted as 

much as possible toward the completion time of the last job 
processed before it. 

   The objective function of this solution is calculated and 
placed in set П. 

   The best solution obtained in set П is compared and replaced 
with the best known solution if its objective value is less than 
the objective value of the best known solution. 

  End 
       End 
      End 
Return the best known solution. 

 
Fig. 4 The procedure of the NP-heuristic 
 
 
4.2 The Genetic Algorithm 
 
The mathematical model formulated for the determination of job sequence to the FSSP with 
availability constraints (Section 2) belongs to mixed-integer linear programming (MILP) 
problem. A GA is proposed to evolve an optimal or near optimal solution for minimum 
makespan to the FSSP with availability constraints model. Genetic algorithm has been proven 
to be powerful optimization technique for constrained optimization and combinatorial 
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optimization problems [31, 32]. In order to obtain better and more robust results, the Taguchi 
method is used for tuning the GA’s parameters. Our implementation of GA based heuristic is 
presented as follows. 
 
Design of Genes  
Each gene is a job or PM task and the chromosome is a job and PM sequence vector on 
machines. The genotype representation of the chromosome and the physical meaning of them 
are outlined in Figure 5. 

 
 
 

 
 
Fig. 5 Chromosome representation 
 
Initial population 
To make the initial population, first the finished time of all PM tasks are specified (assigned 
to the time windows) through one of the 3 above mentioned ways (Section 3) according to a 
given probability (0.1, 0.1 and 0.8, respectively). This procedure is repeated as many times as 
the number of initial population, so a set of chromosomes, which their PM task positions are 
fixed, is produced. Then, the sequence of jobs is generated using three methods. 10% of job 
sequences of initial population are obtained by NEH procedure [30]. NEH heuristic’s 
schedule is used in the generation of initial population since the NEH schedule can generate 
suboptimal solution rapidly. 30% by Random Permutation Job Sequence (RPJS) and the rest 
of them are achieved by Random Non-Permutation Job Sequence (RNPJS). The diversity of 
the initial population can be retained due to the fact that a majority of job sequences are 
generated randomly. 

Finally, each job sequence is matched to a member of PM task set and jobs are inserted in 
the free periods of time between maintenance tasks.  

 
Selection 
The selection provides the opportunity to deliver the gene of a good solution to next 
generation. There are various selection operators available that can be used to select the 
parents. In this study, the roulette wheel selection is employed. 
 
The Genetic Operators 
Crossover 
Crossover is a process in which chromosomes exchange genes through the breakage and 
reunion of two chromosomes. Offspring of crossover should represent solutions that combine 
substructures of their parental solutions. In this study the order crossover is chosen [33]. We 
should note that crossover procedure is done on job sequence. 
Mutation 
Mutation operator generates an offspring by randomly modifying the parent’s feature. Two 
mutation operators are chosen:  

1. Choose one chromosome randomly and then choose two priorities on machines of the 
selected chromosome randomly, now replace selected jobs with each other.  

Machine 1 Machine 2 Machine m
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2. Choose one chromosome randomly and then choose two priorities on machines of the 
selected chromosome randomly, now exchange sequence of jobs there are between two 
selected priorities. 

In our implemented GA, two mutation operators are used to ensure that the diversity can be 
enhanced and the search region can be extended. 
 
Fitness Function 
The fitness function is the same as the objective function which is defined in Section 2, 
namely makespan. In the presented GA the lower fitness function is desired. 
 
Termination condition 
The search process stops if the number of iterations is greater than maximum number of 
generations, a priori fixed constant.  
 
 
5 Computational results 
 
In order to evaluate the performance of the GA proposed in the previous section, experiments 
are performed on randomly generated instances. Furthermore, for the smaller size problems of 
FSSPAC (i.e., the number of machines and jobs are small), LINGO Optimization solver is 
used to find out the optimal solution and compared with the corresponding GA results. Due to 
the related problem belongs to NP-hard problems, the computational time rises exponentially 
as either the number of variables and constraints increase. Therefore, such exact solvers are 
limited by the problem size and cannot be used to solve medium and large problem instances. 

In this section some results for several instances is reported. We generate random 
problem instances for number of jobs and number of machines from 2×2 to 20×20. Job 
processing times on each machine are drawn from discrete uniform distribution in the interval 
[1–100]. We consider two maintenance tasks on each machine for large problems (n≥10) and 
reduce it to one task for smaller ones. These tasks are generated randomly for each machine. 
The maintenance tasks occur after at least one operation and before at least one operation. The 
duration of a maintenance task on a machine is the average of the processing times of 
operations on this machine and a maximum shifting of 50 time units to each time windows 
maintenance task is allowed.  

The genetic algorithm and developed heuristic are coded in MATLAB R2007(b) and all 
tests are conducted on a PC at Core Due 2 GHz with 1.0 GB of RAM.  

 
 

5.1 Taguchi experimental design 
 
In this paper, the Taguchi method is used to calibrate the parameters of meta-heuristic 
algorithm. This method has been presented by Taguchi in early 1960s, and it can be used in 
the designing of processes. The orthogonal arrays of the method are used for the study of a 
large number of factors with a few experiments. In this method, there are two classes of 
factors including controllable factors and noise factors in which the first one and second one 
will be placed in inner and outer orthogonal array, respectively. The noise factors are the 
factors that cannot be controlled. The measured values of quality characteristics obtained from 
the experiments will be converted to signal/noise ratio (S/N). The S/N ratio is used to 
determine the optimal parameter level combinations. The Taguchi method seeks to minimize 
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variances of quality characteristics resulted from S/N ratio, which it is the reason of that 
parameter design is also called robust design [34].  

Designing procedure of Taguchi can be explained as follows [35]: 
 The influences of the controllable factors are evaluated over the S/N ratio and mean of 

response.  
 For the factors that have significant impact on the S/N ratio, the levels that increase 

the S/N ratio will be selected. 
 Each factor that does not have any significant impact on S/N ratio and has significant 

impact on mean of responses, the level where it’s mean of response is closer to 
objective point will be selected. 

 Factors with no significant impact either on S/N ratio or on mean of response is 
considered as economical factors and levels that decrease cost of computation will be 
selected. 

Quality characteristic of this paper is relative percentage deviation (RPD), which prefers 
"the smaller-the better” type. The S/N ratio for “the smaller-the better” characteristic is 
determined by the formula is presented below [36]:   

(12) 







 



n

i
ij y

n 1

21log10  

where j, yi and n denote the trial number, response variable and the number of replications, 
respectively.  
 
GA parameter tuning 
The factors that can have significant effects on the genetic algorithm and their proper levels 
are presented in Table 2. Initial trials reveal that the levels considered for the factors in Table 
2 produce better results in comparison with other values. 
 
Table 2 GA’s factors and their considered levels 
 

Factor Notation level Value 
Population size  Popsize 3 100, 150, 200 
Crossover rate Pc 3 0.75, 0.8, 0.85 
Rate of first mutation  Pm1 3 0.025, 0.05, 0.075 
Rate of second mutation   Pm2 3 0.025, 0.05, 0.075 
Number of iterations NI 3 250, 500, 750 

 
35=243 experiments are required for the full factorial design in GA. According to the 
computational time and cost, this kind of experimental design is not economical. As 
mentioned above, the fractional design (Taguchi method) is used instead of full factorial 
design. For the selection of a suitable orthogonal array, degrees of freedom should be 
calculated. The proper orthogonal array is )3( 5

27L . The selected Taguchi design for GA has 
27 different level combinations of control factors. For every trial, five random instances with 
different size are considered and each of them is replicated three times in order to obtain more 
reliable results. The relative percentage deviation (RPD), as a common response variable, is 
used to compare the methods. RPD is calculated as follows: 

(13) 100
min

min 






 


OV
OVOVRPD i  

where OVmin and OVi are the best found objective value for a particular instance and the 
objective value obtained for the ith trial, respectively.  
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The RPD value is transformed into the S/N ratio. The mean S/N ratio and mean RPD 
value is calculated for each level of control factors and they are plotted versus the control 
factors in Figures 6 and 7, respectively. To test the statistical significant of control factors, the 
analysis of variance (ANOVA) is carried out. Tables 3 and 4 show the analysis of variance 
associated with mean S/N ratio and mean RPD, respectively.  

According to Table 3, the factors of second mutation rate (Pm2) and number of iterations 
(NI) have significant impact on the S/N ratio. Therefore, these factors are considered as 
control factors and based on Figure 6, 0. 05, 500 with highest values of S/N ratio are selected 
as the optimal value for them, respectively. Also Table 4 shows that the factors of crossover 
rate (Pc) and second mutation rate (Pm2) have significant impact on the RPD values. 
Therefore, according to these tables, factor crossover rate is considered as the adjustment 
factors and based on Figure 7, the levels with lowest values of mean RPD (0.85) are 
considered as the optimal values of this factor. The factors of population size (Popsize) and 
first mutation rate (Pm1) neither have a significant effect on the S/N ratio nor on the mean 
RPD values. Thus, they are recognized as economical factors and a level of them which 
results in shorter computation time or higher quality solution is selected. Accordingly, the 
optimal value of each factor is shown in Table 5. 
 
Table 3 ANOVA for S/N ratio in GA 
 

Source df SS MS F P 
Popsize 2 4.56 2.281 0.02 0.983 

Pc 2 526.36 263.181 1.99 0.188 
Pm1 2 121.64 60.819 0.46 0.645 
Pm2 2 882.79 441.393 3.33 0.078 
NI 2 1062.24 531.122 4.01 0.053 

Residual Error 10 1325.61 132.561 
  Total 20 3923.2 

    
Table 4 ANOVA for mean RPD 
 

Source df SS MS F P 
Popsize 2 0.6447 0.3223 0.89 0.439 

Pc 2 2.5548 1.2774 3.55 0.069 
Pm1 2 0.5378 0.2689 0.75 0.499 
Pm2 2 2.9336 1.4668 4.07 0.051 
NI 2 0.7937 0.3969 1.1 0.37 

Residual Error 10 3.603 0.3603 
  Total 20 11.0676 

   

 
Fig. 6 The mean S/N ratio plot at each level for objective function values in GA 
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Fig. 7 Main effects plot for RPD values for algorithm calibration 

 
Table 5 The optimal level of factors 
 

Factor Notation Optimal level 
Population size  Popsize 100 
Crossover rate Pc 0.85 
Rate of first mutation  Pm1 0.025 
Rate of second mutation   Pm2 0.05 
Number of iterations NI 500 

 

 
 
5.2 Experimental results 
 
To evaluate the effect of flexible availability constraints against constant availability 
constraints on objective functions, five instances of problem size (m.n.L) = (3.3.1) is 
examined with more details and the obtained results are shown in Tables 6. As mentioned in 
constraint set (9), completion time of maintenance task on each machine has to plan in 
predefined time window. For constant condition, two cases are considered. Completion time 
of maintenance task on each machine is equal to the pre-specified early completion time (FMil 
= EMil) or late completion time (FMil = LMil).   
 
Table 6 Obtained results for flexible or constant availability constraints in problem size m=3, n =3 and L=1 
 

No. 
Flexible maintenance   FMil = EMil   FMil = LMil 

Makespan Time 
(s)   Makespan Time (s) Gap   Makespan Time (s) Gap 

1 330 8   364 3 10.30%   350 2 6.06% 

2 350 4  367 7 4.86%  356 1 1.71% 

3 302 3  361 9 19.54%  320 3 5.96% 

4 297 7  341 15 14.81%  312 5 5.05% 

5 263 6  272 3 3.42%  292 2 11.03% 

Average 308.4 5.60   341.0 7.40 10.59%   326.0 2.60 5.96% 
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Fig. 8 Comparative result in flexible or constant maintenance conditions for the problem size (m.n.L)=(3.3.1) 
 
Tables 6 and Figure 8 show that when flexible maintenance activity was considered in the 
model the better results obtained for makespan minimization. 

The comparison for smaller size problems between the GA, modified SPT (M-SPT), 
modified NEH (M-NEH), NP-heuristic and LINGO is listed in Table 7. 
 
Table 7 Comparison of exact solution with M-SPT, M-NEH, NP-heuristic and GA for small-sized problem 
 
No. Size (m.n.L) Solver (LINGO8)  M-SPT  M-NEH  NP-heuristic  GA 

Cmax Time (s)  RPD Time (s)  RPD Time (s)  RPD Time (s)  RPD Time (s) 
1 (2.3.1) 326 1  16.90 0.030  5.61 0.055  0.28 0.098  0.00 0.72 
2 (2.4.1) 416 46  18.25 0.025  10.58 0.047  6.49 0.087  0.00 0.96 
3 (2.5.1) 446 122  24.57 0.025  12.56 0.052  1.12 0.099  1.12 1.56 
4 (3.3.1) 374 4  28.61 0.024  1.60 0.046  0.16 0.085  0.00 0.98 
5 (3.4.1) 487 666  11.21 0.030  3.57 0.054  0.00 0.108  0.00 1.22 
6 (4.2.1) 458 2  8.52 0.024  8.52 0.044  2.66 0.078  0.00 0.91 
7 (4.3.1) 390 7  12.03 0.025  11.03 0.047  1.28 0.092  1.28 1.22 
8 (4.4.1) 474 3600  8.21 0.024  3.10 0.054  0.00 0.113  0.00 1.58 
9 (5.2.1) 462 4  13.66 0.025  3.92 0.053  2.38 0.088  0.00 1.23 
10 (5.3.1) 512 57  4.63 0.026  1.70 0.051  0.00 0.099  0.00 1.56 

Average 434.5 450.9  14.66 0.026  6.22 0.050  1.44 0.095  0.24 1.20 
 

The values in RPD's column are the difference between the objective values of the solution methods against the exact solution. 
 
Comparing the CPU times of exact solution in the fourth column of Table 7 confirms that 
computation time grows exponentially by increasing the dimension of the problem. According 
to this table, the average computational time for problems with (m = 3, n = 3, L = 1) is 4s and 
the average computational time for problems with (m = 3, n = 4, L = 1) is 666s. It means that 
by adding one level to number of jobs, the average computational time increases more than 
166 times. The RPD columns depict the gap percent between makespan obtained by M-SPT, 
M-NEH, NP-heuristic and GA against the optimal solutions. Table 7 confirms the advantages 
of the NP-heuristic in comparison to the SPT and NEH methods. Thus, the NP-heuristic is 
used to compare performance of GA for large-size problems. As can be seen in Table 7, the 
proposed GA based heuristic provides solution the same or close to optimal solution obtained 
through LINGO. The computational times elapsed to solve the small-sized problem also are 
much less than LINGO. 
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For large-sized instances, Table 8 shows the makespan and CPU time in second for M-
SPT, M-NEH, NP-heuristic and GA.  “Best Cmax” and “Mean Cmax” columns show the best 
and the mean makespan of five independent runs for each instance using GA, respectively.  
 
Table 8 Makespan and run time obtained by the solution methods for the test problems 
 
Prob. m n L M-SPT  M-NEH  NP-heuristic  GA 

Cmax Time (s)  Cmax Time (s)  Cmax Time (s)  Best Cmax Mean Cmax Time (s) 
1 5 5 1 775.3 0.048  725.5 0.024  691.0 0.146  648 653.6 35.01 
2 5 10 2 1345.2 0.065  1262.5 0.025  1163.0 0.620  1063 1080.8 64.51 
3 5 20 2 1958.2 0.192  1890.0 0.0  1797.0 4.664  1649.8 1666.8 121.04 
4 10 5 1 1134.4 0.057  1061.8 0.027  895.4 0.373  828.9 855.7 67.59 
5 10 10 2 1661.9 0.089  1541.2 0.026  1452.9 2.587  1306 1335.0 132.14 
6 10 20 2 2768.8 0.375  2581.1 0.030  2460.0 18.524  2385 2416.2 259.11 
7 20 5 1 2637.2 0.085  2549.6 0.030  2531.1 1.067  2380 2396.7 158.68 
8 20 10 2 3170.4 0.136  3009.0 0.030  2752.0 8.897  2700 2723.7 275.83 
9 20 20 2 4116.7 0.731  3810.5 0.0367  3696 74.318  3587.5 3610.7 592.71 

Average 2174.2 0.197  2047.9 0.028  1937.6 12.355  1838.7 1859.9 189.62 
 
As Table 8 shown, among of the solution methods, GA for the related problem is better than 
the other algorithms. Moreover, the superiority of implemented GA is concluded over other 
heuristics including M-SPT, M-NEH and NP-heuristic due to the computational results. 

The convergence of the GA to optimal solution is studied by plotting the minimum 
fitness value for every generation against the generation number. One such curve for the 
10.10.2 problem size is shown in Figure 9. 
 

 
 
Fig. 9 GA convergence for the problem size m=10, n =10 and L=2 
 
 
6 Conclusion and future work 
 
This paper presents a mixed integer linear programming formulation for flow shop scheduling 
problem with availability constraints which is often occurring in shop of real world. The 
schedules generated by this model are not restricted by permutation constraint. The MILP 
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Model could be used to compute optimal solutions for small-sized problems by optimization 
solvers. However, as the size of problems increased, it is difficult or impossible to reach 
optimal solution using these solvers. Therefore, a genetic algorithm is implemented to solve 
FSSP with availability constraints. To verify the effectiveness of the presented approach, 
computational experiments are performed. Comparing the results of the proposed GA with 
LINGO for the small-sized problems shows that the GA can reach optimal and in some cases 
near to optimal solutions in short computational time. Also for large size instances, results of 
the GA are compared with some modified classical heuristics such as M-SPT and M-NEH 
and a developed heuristic that can generate non-permutation schedules. The superiority of 
implemented GA is concluded over these heuristics due to the computational results. 
It may be interesting to extend the MILP model with considering other assumptions such as 
sequence-dependent setup times, transportation constraints, and reentrant operations. Further 
research also can be used other meta-heuristic algorithms to solve the problem such as tabu 
search (TS), simulated annealing (SA), and particle swarm optimization (PSO). Hybrid 
algorithms should be developed by using a local search algorithm within a GA that is after 
generating an offspring, the solution should be improved by applying for instance TS or SA 
before applying the selection criterion of GA. 
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