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Abstract Performance evaluation of electricity distribution units is an important issue
between researchers and regulators. Classic Data Envelopment Analysis models with
deterministic data have been used by many authors to measure efficiency of power
distribution units in different countries. However, Data Envelopment Analysis with stochastic
data are rarely used to measure efficiency of distribution companies. In this paper, input
oriented model in stochastic Data Envelopment Analysis is used to evaluate power
distribution units in Iran. In addition, variable returns to scale super efficiency model is used
in stochastic Data Envelopment Analysis to rank stochastic efficient units. Deterministic
equivalent of each stochastic model, which can be converted to a quadratic program, is
applied to obtain numerical results with stochastic data. Under fairly general conditions, this
model equivalent program is replaced by a linear programming problem. 38 Iranian electricity
distribution units have been considered in this study for which computational results of both
classic and stochastic approaches are obtained. It is shown that, on average, with considering
deterministic (stochastic) data at most 89(94) percent of the resources for Iranian power
distributions units is needed to make them technically efficient.
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1 Preliminaries

In the last decades, performance evaluation of electricity distribution units has been
considered as an important issue between researchers and regulators. Data Envelopment
Analysis (DEA) which is based on a mathematical programming approach is an important
methodology for measuring efficiency of decision making units (DMUs). This methodology
has its strengths and limitations. In this methodology, the frontier is defined by the most
efficient DMUs of the sample. Mathematically, DEA is introduced as a high reliability
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analysis tool and have been largely used for studies in the electrical filed. Fore example, Goto
and Tsutsui [1] used the Data Envelopment Analysis (DEA) model to measure cost efficiency
and technical efficiency between Japanese and US electricity utilities. They showed that
Japanese utilities were more efficient than the US ones in terms of technical, allocative and
scale efficiency. Resende [2] used non-parametric input-output DEA model for evaluating
Brazilian electricity distribution firms. Jamasb and Pollit [3] compared 63 regional electricity
distribution utilities for six European countries. To calculate efficiency and to consider the
effects of the choice of variables and methods, they used ten DEA, corrected ordinary least
square (COLS), and stochastic frontier analysis (SFA) models. Estache et al. [4] applied DEA
and econometric methods for performance assessment and ranking of South American
electricity units. Giannakis et al. [5] applied the DEA model to study service quality of UK
electricity distribution utilities. A researcher is 2001 applied the DEA approach to measure
technical efficiency of Chinese thermal power generation based on cross-sectional data for
1995 and 1996. Their results showed that municipalities and provinces along the eastern coast
of China and those with rich supplies of coal achieved the highest level of technical
efficiency. In the second stage regression analysis, they found that fuel efficiency and the
capacity factor significantly affect technical efficiency. See, also, Sanhueza et al. [6], and
Pollit [7]. Furthermore, Azadeh et al. [8] proposed an adaptive neural network algorithm to
performance assessment of electric power generations. They applied the proposed approach
on a real data set for measuring 19 power generations in Iran. Azadeh et al. [9] applied DEA
and principle component analysis (PCA) for performance assessment and optimization of
electricity distribution units in Iran. Moreover, Sadjadi and Omrani [10] applied Data
Envelopment Analysis with uncertain data on Iranian electricity distribution companies. They
proposed a DEA method with consideration of the uncertainty on output parameters. As some
authors argue, see for example Coelli [11], in many studies the researchers have to select
input oriented models because DMUSs have particular orders to fill, e. g. power distributions,
and hence the input quantities appear to be the primary decision variables.

The Data Envelopment Analysis makes no assumption about the functional form of the
frontier. Instead, it specifies certain assumptions about the underlying technology that in
combination with the data set allows the construction of the production set. For instance, the
DEA frontier is very sensitive to the presence of the outliers and statistical noise which
indicates that the frontier derived from DEA analysis may be warped if the data are
contaminated by statistical noise, see Bauer [12]. To incorporate possible uncertainty in inputs
and/or outputs, stochastic formulation of the original DEA models were introduced in the
literature. See, for example, Olesen and Petersen [13], Cooper et al. [14], Li [15], Cooper et
al. [16], Cooper et al. [17], Cooper et al. [18], Land et al. [19], Huang and Li [20]. See, also,
Kall [21] for discussions on stochastic linear programming programs. More recent
applications of stochastic DEA are described as follows. Odeck [22] pointed out that while
DEA has many advantages such as modeling multi output and multi input technologies even
in the absence of price data, the technique has one particular draw back. The drawback is that
the estimates from convention DEA analysis offer no information on estimates uncertainty.
Therefore, he provided an alternative and complementary approach to performance
assessment as well as to the determinants of that performance. He contributes to the literature
on efficiency and productivity measurement in the agricultural sector by employing
Malmgquist indices to measure productivity, DEA to measure efficiency and bootstrapping to
ascertain confidence intervals for the estimators. He found that the mean potential for input
saving among Norwegian grain producers has been approximately 11%. Kao and Liu [23]
used stochastic Data Envelopment Analysis in measuring the efficiency of Taiwan
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commercial banks. The input/output data of their study was obtained from the Taiwan Stock
Exchange Corporation (TSEC) which only contains annual data for each bank. Using data of
five years as multiple observations for each bank, their average is used as the constant
observation for calculating the efficiency. In their study an assumption that the data
distributions in five years are the same has been made. They noted that the conventional DEA
approach categorizes the DMUS as efficient and inefficient ones, on the other hand, the
stochastic DEA approach does not give a sharp categorization. Therefore, many DMUS may
not always be efficient, yet they have the chance to be recognized as efficient. The
probabilistic type of categorization is psychologically more acceptable to the DMUS being
evaluated, because unlike the classical 0-1 type categorization, it gives a DMU some chance
of being classified as efficient. Khodabakhshi and Asgharian [24] applied stochastic input
relaxation model on data of textile industry of China to evaluate technical efficiency with
considering maximum possible output. They elaborated importance of their model to
management of resources for textile industry. Khodabakhshi [25] applied stochastic input-
output orientation model on data of software companies to obtain most productive scale size
companies. He found that SNIC, VENQ, and Adobe can be used as benchmark for other
research oriented companies to improve their performances. Furthermore, Khodabakhshi et al.
[25] applied stochastic input oriented super efficiency model under constant returns to scale
assumption to evaluate efficiency of chief executive officers of top US public banks and
thrifts. See also Khodabakhshi et al. [26]. Alternatively, other authors proposed fuzzy
mathematical programming approaches of Data Envelopment Analysis to deal with variations
in data see, for example, Kao and Liu [27], Liu [28], Leon et al. [29], and Lertworasirikul et
al. [30]. Here, we are interested in stochastic variations in input-output data. In this paper,
first, the classic input orientation model introduced in Banker et al. [31] is used to evaluate
electricity distribution units in Iran. The super efficiency model introduced in Anderson,
Petersen [32] is also used to rank efficient units. One may refer to, for example, Adler et al.
[33], Mehrabian et al. [34], Martic and Savic [35], Tone [36], Li et al. [37], and
Khodabakhshi [38] to see further research on super efficiency in DEA. Next, efficiency of
power distribution units with considering stochastic data is measured. Then, we extend
variable returns to scale input-oriented super-efficiency model, allowing deterministic inputs
and outputs to be stochastic. The stochastic super efficiency model is used to rank stochastic
efficient units. To obtain numerical results with stochastic data, a deterministic equivalent of
each stochastic model is used which can be converted to a quadratic program. Computational
results of the classic and stochastic approaches are compared, too.

The rest of the paper is organized as follows. Input oriented BCC model, and Input
oriented super-efficiency model in classic DEA are introduced in subsection 2. Subsection 2,
also, includes stochastic input orientation model and its deterministic equivalent. Moreover,
the input oriented super efficiency model is developed in stochastic data envelopment
analysis, and its deterministic equivalent is also obtained. Furthermore, it is shown that the
deterministic equivalent of the stochastic super efficiency model can be converted to a
quadratic program. Section 2 applies the classic and stochastic approaches on data of Iranian
electricity distribution companies. Section 3 concludes the paper.

The following subsections contain some classic DEA models and their extensions in
stochastic DEA. Specifically, variable returns to scale input oriented super efficiency model is
developed in stochastic DEA.
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1.1 Classic DEA

It is assumed that there are n homogeneous DMUSs such that all the DMUs use m inputs X j;
(i=1,...,m) to produce s outputs y;; (r=1,...,s) . We also assume that x; and y,; are non-negative
deterministic elements.

1.1.1 Classic DEA

One of the basic models used to evaluate DMUs efficiency is the input-oriented BCC model
introduced by Banker, Charnes, and Cooper [31]. This model is as follows.

Min6’0+5(25i+2S:j

i=1 r=1

St z&jxl.jwtsl.’zé’xm ; i=1,..,m
j=1

ZAjyrj—ym—sfzo ;or=1,...,s
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Jj=1
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Definition 1. (Efficiency according to model(1)): DMUO is efficient when in optimal
solution(s)

i) 0 =1

i) s7=s," =0, i=1,...,m, r=1,....s.

One may refer to, for example, Charnes et al. [39], Cooper et al. [40], Jahanshahloo and
Khodabakhshi [41,42], Thanassoulis [43], Cooper et al. [44] and Khodabakhshi [45] to see
further classic models in DEA.

1.1.2 Super efficiency model

Excluding the column vector correspond to DMUo from the LP coefficients matrix of model
(1) input oriented super-efficiency model introduced by Andersen and Petersen [32] is
defined as follows:

Min 6,
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Although the model is used to rank extreme DEA efficient DMUs obtained by the BCC
model, it can also be used to evaluate efficient units directly. Therefore, without solving the
BCC model, one can rank efficient DMUs by simply solving the super-efficiency model.
Efficient DMUs have super-efficiency score greater than or equal to 1, while inefficient
DMUs have super efficiency score less than 1. To explain this point more precisely, if the
optimal objective value of the super-efficiency model is greater than 1, DMUo that is DEA
efficient in the BCC model is super efficient. Otherwise, DMUo is not super efficient. Thus,
one can solve the super-efficiency model for ranking efficient units without solving the BCC
model. The super-efficiency scores of the DMUs obtained by the above super-efficiency
model can then be ranked in a descending order.

1.2 Stochastic DEA

In what follows, an approach which allows for the possible presence of stochastic variability
in the data is introduced. Following Cooper et al. [17] and Khodabakhshi and Asgharian [24],
let X =(X 1, ..., Xm)’s ¥i=(V1j, ..., ¥5) be random input and output related to DMU; (j=1,
..., n). Let also X{=(Xij,..., Xmj)'’s ¥i=(y1js---» Y5)' show the corresponding vectors of expected
values of inputs and outputs for DMUj. Suppose that all input and output components are
jointly normally distributed. Following Cooper et al. [17], the corresponding stochastic
version of Model (1), including slack variables, is:

Min 6’0+e(isi+25:j
i=1 r=1

st p Zi_/f!/wtsfégfm}Zl—a i=1,..,m
=
p{Zﬂ._/)N/r/ ym_sr}>l—a r=1,.,s
J-1
> oA, =1 €)
=1
S; A8, 20

where o, a predetermined value between 0 and 1, specifies the significance level, and P
represents the probability measure.

Definition 2: (Stochastic efficiency according to model (3) DMUo is called stochastically
efficient at significance level « if the following conditions are fulfilled.

i) 0 =1

ii)s;"=s, =0 ; foralliandr

DMUo is called stochastically inefficient if it doesn't fulfill the conditions of Definition 2. In
other words, if for an optimal solution 9:<1, or some of slacks are non zero, then DMUo is

stochastically inefficient. In fact, if 6 <1, then all inputs for evaluating DMUo can be
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decreased to 9: Xio, (=1 ,..., m) by using a convex combination of the other DMUs at the

significance level « .

1.2.1 Stochastic input oriented super-efficiency model

Based on the previous assumptions, the stochastic version of the input oriented super-

efficiency model can be defined as follows.

Min

0
s.t. p{ A%, =0k, <0} >1-a
j=1.j#

4

DMUo is stochastically super-efficient at significance level « if the optimal value of the
objective function is greater than 1. Therefore, if 6 >1 it means that even if DMUo

consumes 6" percent of its current input it can remain efficient, hence the greater the 6°", the

better the DMU. In what follows, the deterministic equivalent of the above stochastic super-

efficiency model is obtained.

1.2.2 Deterministic equivalents

In this subsection, we exploit the Normality assumption to introduce a deterministic
equivalent to model (4). It is assumed that x;; and y;; are the means of the input and output
variables, which are, in application, observed values of the inputs and outputs. Following
Khodabakhshi and Asgharian [24], the deterministic equivalent of (3) can be represented by

the following quadratic program.
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One can, therefore, obtain the optimal values 6 , s and s, by solving the quadratic

program. Finally, in a similar fashion, the following deterministic equivalent for the stochastic
input oriented super-efficiency model is obtained.

Min 6

o
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1

where ¢ is the cumulative distribution function (cdf) of a standard Normal random variable

and ¢~ is its inverse. It is assumed that x; and y; are the means of the input and output

variables, which are the observed values of the inputs and outputs in the following
application.

2 Data and results

This study considers annual data of 38 Iranian electricity distribution companies observed in
2004. The Iranian electricity distribution units established in 1992, are public and act under
the supervision of TAVANIR Company (Iran power, Generation, Transmission and
Distribution Management Company). According to the extensive review in Jamasb and
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Pollittt [46], the most frequently used inputs are operating costs, number of employees,
transformer capacity and network length. The most widely useful outputs are also units of
energy delivered, number of customers and size of service area. Note that the network length
and transformers capacity are capital variables for electricity distribution units. The cost data
usually are not available. The measurement units for the network length, transformers
capacity and total electricity sales are Kilometer (KM), MVA and MWh, respectively. This
study used network length, transformer capacity, and employee variables as inputs and total
electricity sales and number of customers variables as outputs. Table 1 shows the data and
summary statistics for the case study, see Sadjadi and Omrani [10].

Table 1 Data of electricity distribution units

Labor Net. Length  Cap. Transformers  Sales No. Customers
1 540 8790 1106 1951 505.546
2 849 17680 1030 1450 479.527
3 1001 20118 1345 2191 650.487
4 405 10363 530 763 292.306
5 575 8771 1356 3153 630.812
6 1028 26399 2866 5218 768.629
7 290 7802 583 831 186.856
8 585 15032 1578 2563 409.273
9 573 13347 1217 1914 427.753
10 566 12498 1060 1253 3354
11 664 12183 2368 4572 843.957
12 512 5191 1842 4664 721.002
13 530 8710 1968 3117 614.745
14 555 4829 1553 3356 753.741
15 650 7875 1706 3847 763.018
16 806 10571 2295 4140 835.5
17 324 5628 805 1655 278.532
18 752 11608 1696 3620 780.217
19 1439 47237 2605 6411 1057.901
20 524 5385 2297 6237 260.814
21 1348 19916 4081 7000 515.665
22 363 5429 571 692 110.375
23 344 10567 809 1236 234.129
24 292 9031 1003 2327 307.647
25 360 8363 768 1357 196.944
26 507 13230 1210 1583 420.976
27 398 12082 767 1097 324.524
28 241 5125 455 563 114.151
29 717 13480 2008 2822 534.869
30 759 25735 1970 3332 515.333
31 354 7522 1163 1826 200.817
32 997 31554 2145 4935 598.648
33 900 21665 1634 2515 777.329
34 773 18897 1877 2453 702.745
35 269 6224 645 868 269.786
36 407 10498 1005 1327 359.538
37 924 16510 1865 3091 304.896
38 596 12595 1022 2335 355.344
mean 624 13380 1494.842 2744 485.2561
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From computational results of Table 2 efficiency score of power distribution companies 4, 5,
11, 12, 14, 16, 17, 19, 21, 24, 28, 33 and 35 are equal to unity. Therefore, these DMUs are
efficient. Note that the slack values for these DMUs are all zero which we refrained from
providing them in separate columns, therefore, they are strong efficient, i. e. they satisfy in
both conditions (i) and (ii) of definition 1. From using resources point of view, these
companies are technically efficient. In other words, they have no extra resources or wastes in
their inputs. The rest of companies are inefficient. Inefficient companies obtained efficiency
scores, ranging from a minimum of 0.6248, DMU 29, to 0.999, DMU 38, making them
inefficient. For example, company 10 has efficiency score 0.675. It means that this company
wastes (1-0.675) =0.325 percent of its current resources. In other words, 0.675 percent of
resources for this company is enough to make it technically efficient. The inefficient DMUs
are comparable using their efficiency scores which are less than one. However, efficient
DMUs which have efficiency scores of unity are not comparable among themselves.
Therefore, the super efficiency model is used to rank them. The results of super efficiency
model and rank of DMUs are presented in columns 3 and 4, respectively. Based on the results
of super efficiency model, company 20, with super efficiency score 2.8 is ranked the first. It
means that, even if DMU 20 consumes 2.8 times of its current inputs, in comparison to other
companies, it remains efficient. Note that the higher the super efficiency score, the better the
DMUs. After DMU 20 the next three Companies are, DMU 21, 2.58, DMU 12, 1.85 and
DMU 14, 1.39. At the bottom, the worst DMU is DMU 29 with efficiency score or super
efficiency score 0.62485. In fact, DMU 29 with only 62.485 percent of its current inputs can
be efficient, while 37.515 percent of its current inputs is wasted. Note that for inefficient
DMUs super efficiency score is the same as the efficiency scores. After DMU 29, three next
weak DMUs are DMU 37, 0.6739, DMU 10, 0.6749 and DMU 30, 0.69721. In overall, the
mean technical efficiency score of power distribution units is 0.8965. In other words, in
average, 10.35 percent of resources (inputs) for Iranian power distribution industry is wasted.

Table 2 Computational Results of classic models

.DMU No Efficiency score Super efficiency score Rank
1 0.9069 23
2 0.9175 21
3 .0.9845 17
4 1 1.2950 7
5 1 1.0338 12
6 0.7221 33
7 .0.9523 19
8 0.7015 34
9 0.7626 31
10 0.6750 36
11 1 1.2576 8
12 1 1.8569 3
13 0.8581 26
14 1 1.3935 4
15 0.9861 16
16 1 1.0873 11
17 1 1.0197 13
18 0.9697 18
19 1 1.3150 5

20 1 2.8057 1
21 1 2.5899 2



http://ijaor.com/article-1-453-en.html

[ Downloaded from ijaor.com on 2026-01-30 ]

26 M. Khodabakhshi, et al. / IJAOR Vol. 5, No. 3, 17-30, Summer 2015 (Serial #17)

.DMU No Efficiency score Super efficiency score Rank
22 0.9399 20
23 0.8429 27
24 1 1.1774 9
25 0.9135 22
26 0.7463 - 32
27 0.8961 24
28 1 1.2971 6
29 0.6249 38
30 0.6972 35
31 0.8335 28
32 0.8923 25
33 1 1.0004 14
34 0.7672 30
35 1 1.1602 10
36 0.8041 29
37 0.6739 37
38 0.9990 15

Observed data of 38 companies for Iranian electricity distribution, also, is used to calculate
stochastic efficiency and super efficiency scores for each company in 2004. To compute

results for stochastic data, a =0.45 has been chosen for which ¢'(a)=-0.12. This rather

large value of «a is deliberately chosen to illustrate differences between the results based on
the classic and the stochastic one. It is assumed that all DMUSs have the same variance, but
they can have different means. The variances for the outputs and the inputs can therefore be
estimated by:

~ 38 2 ~ 3 2
Var(7,)= %72(%, ~7 )%, Var(%)= %7 > —X ),
j=1 Jj=1

where

38 38
V= %8 /Z:}y” and X,= %8 /Z:}xi/

and x;; and y;; are the observed values of inputs and outputs for DMU; which we used as an
estimate for the expected values of the stochastic inputs and outputs. It is, also, assumed that
outputs and inputs for different DMUs are independent. This independence assumption then
implies that Cov(y, ,», )=0 and also Cov(X,, X, )=0. Models (5) and (6) can be, therefore,

ij2
converted to linear programs which can be solved using the simplex method. However, the
stochastic results obtained from GAMS software are presented in Table 3. Computational
results of stochastic efficiency and super efficiency models, their deterministic equivalents,
are presented in Table 3. Columns 2, 3 and 4 represent efficiency scores, super efficiency
scores and rank of DMUs, respectively. Based on the efficiency results, column 2, efficiency
scores for DMUs 6, 8-10, 13, 26, 29-32, 34, 36, and 37 are less than one. Therefore, these
DMUs are inefficient. Inefficient companies obtained efficiency scores, ranging from a
minimum of 0.6861, DMU 29, to 0.9688, DMU 32, making them inefficient. The rest of
DMUs which have efficiency score of unity are efficient. Optimal value of slack variables for
efficient companies are, also, zero in stochastic model. To rank efficient units, the results of
super efficiency model which are presented in column 3 of Table 3 is used. Based on the
stochastic super efficiency results, again, DMU 20 with score 3.81 is ranked the first. Four top
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DMUs in this evaluation are DMU 20, 3.817, DMU 21, 2.81, DMU 12, 2.7447 and DMU 14,
2.1588, respectively. Note that these DMUs are top with the classic and stochastic models.
The worst DMU is, again, DMU 29 with score 0.6861. This DMU is the worst DMU by the
deterministic model, too. At the bottom, after DMU 29 the next DMUs are, DMU 37, 0.7476,
DMU 30, 0.7673, DMU 10, 0.7883 which have weak performances in this evaluation. The
mean overall technical efficiency score of power distribution units is 0.9478. In other words
by considering stochastic data, in average, 94.78 percent of resources (inputs) for Iranian
power distribution companies is enough to make them technically efficient.

Table 3 Computational Results of stochastic models

.DMU No Efficiency score Super efficiency score Rank
1 1 1.0529 24
2 1 1.0715 23
3 1 1.1046 21
4 1 1.6762 6
5 1 1.1643 17
6 0.8421 32
7 1 1.2248 13
8 0.7902 34
9 0.8762 30
10 0.7883 35
11 1 1.6840 5
12 1 2.7447 3
13 0.9479 28
14 1 2.1588 4
15 1 1.2099 14
16 1 1.6279 7
17 1 1.2423 12
18 1 1.1194 20
19 1 1.4057 9

20 1 3.8170 1

21 1 2.8190 2

22 1 1.1827 15
23 1 1.0191 25
24 1 1.3841 11
25 1 1.1258 18
26 0.8524 - 31
27 1 1.0834 22
28 1 1.5904 8

29 0.6861 38
30 0.7673 36
31 0.9657 27
32 0.9688 26
33 1 1.1216 19
34 0.8406 33
35 1 1.4022 10
36 0.9455 29
37 0.7476 37
38 1 1.1690 16
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3 Conclusion

In this paper, Iranian electricity distribution companies are evaluated by classic and stochastic
Data Envelopment Analysis. Input orientation BCC model introduced in Banker et al. [31] is
used to measure technical efficiency of Iranian electricity distribution units in classic DEA.
Furthermore, input oriented super efficiency model of Andersen and Peterson [32] is used to
rank efficient units. Stochastic version of the input oriented model is also used to measure
stochastic efficiency of power distribution companies. Moreover, variable returns to scale
super Efficiency model is developed in stochastic DEA to rank stochastic efficient units.
Numerical results obtained by the two approaches are compared, too. Finally, performance
evaluation of power distribution units by considering fuzzy data can be suggested for further
research.
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