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Abstract This article proposes an optimal method for approximate answer of stochastic Ito-Voltrra
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1 Introduction

Stochastic Ito-volterra integral equations arise in many applications such as mathematical
finance, biology, medical, social sciences, etc. there is an increasing demand for studying the
behavior of a number of sophisticated dynamical systems in physical, medical and social
sciences, as well as in engineering, finance and population growth [1]. These systems are
often dependent on a noise source, on a Gaussian white noise, for example, governed by
certain probability laws. So that modelling such phenomena naturally requires the use of
various stochastic differential equations [2-7] or, in more complicated cases, stochastic Ito-
volterra integral equations and stochastic integro — differential equations [8-17]. Because in
many problems such equations of course cannot be solved explicitly, it is important, to find
their approximate solutions by using some numerical methods [2-5, 13-15].

Many orthogonal functions or polynomials, such as Block Pulse functions, Hybrid
functions, Haar wavelet, Legendre wavelet, Coifman wavelet, Shannon wavelet, Daubechies
wavelet, and Bernestein polynomials, were used to derive solutions of different integral
equations, [18-22]. Here we use the rationalized haar wavelet and stochastic integration
operational matrix for derive solution of stochastic Ito-volterra integral equation.

So, consider the following linear stochastic Ito-volterra integral equation,

X@)=f(@t)+[b(t,s)X (s)ds + [yo(t,s)X (s)dB(s)  te[0,T),
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Where X(1), f(?), b(t, s) and o(t,s) , for t,s €[0,T) , are the stochastic processes defined
on the same probability space (Q,F,P), and X(?) is unknown function. B(z) is a Brownian
motion and j(t)a(t,s)X (s)dB(s) is the Ito-integral.

This paper is organized as follows,

In Section 2, we describe the basic properties of the rationalized Haar functions and
functions approximation by rationalized Haar functions and integration operational matrix. In
section3, we introduce concept of the stochastic integration operational matrix based on
rationalized Haar functions. In Section4, we solve stochastic Ito-Volterra integral equations
by using stochastic integration operational matrix. In section5, we examine the efficiency and

accuracy of this method by giving some numerical examples. Finally, section 6 gives some
brief conclusion.

2 Rationalized Haar Functions (RHFs)

The goal of this section is to recall notations and definition of the rationalized Haar functions
and recall some known results and formulas that are important for this paper. These have
discussed thoroughly in [21, 22].

2.1 Definition

The rationalized Haar functions (RHFs) is defined as:

1
1 j_.1£t<]_,§,
2! 2!
1
RH (r,t)= . J 2£t<j,, (1)
2! 2!
0 otherwise.
where
r=3+j-1, i=0,1,2,3,.. , j=12.3,.2"
RH(0,t) is defined for i=j= 0 and is given by
RH0,0)=1 , 0<Z¢<I, (2)
With orthogonality property,
j(l)RH(r,t)RH(u,t)dtz{z for r=v, 3)
0 for r#+v.
Where
v=2"+m-1 , n=0,1,23,.. , m=12,3..2"
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2.2 Functions approximation

A functions f (¢) defined over the interval ¢ €[0,1] may be expanded in RHFs as,

@)= 2 ,RH(.0) 0
where f,,r=0,1,2,..., are given by
=2 [y f(ORH (r,t)at, (5)

with #=2"+ j—1 for i=0,1,2,3,..., j=1,2,3,...,2", and r=0 for i= j=0.
Ifwelet i=0,1,2,...,c, then the infinite series in equation (4) is truncated up to its first &
terms as,
k-1
f@)= S f,RH (r,t) = FT ®@) =" (1)F, (6)
r=0
where k=2 a=0,1,2,....
The vectors of F'and ®(¢) are defined as,

Fz(fO’fl""’fk—l)T’ (7)

(1) = (s h (D)oo (), 6,(6) = RH(r,1), r=0,1,2,....k 1. (®)

Let k(t,s) e [* ([0,1)x[0,1)). It can be similarly expanded with respect to RHFs such as,
k-1k-1

k(t,s)= 2_10 Z_lokru¢r(t)¢u(s):q)T E)K D(s), )

where K = (k,,)ixi > and k,,, for r=0,1,3,....k-1,0=0,1,2,...,k—1 , is given by

by = 25 [0 [0 (2, 5)0, (D), (5)dtds, i,n=0,13,..a.
The first eight RHFs can be written in matrix form as,

oY (11 1 1 1 1 1 1
a@)| |11 1 1 -1 -1 -1 -1
H@)| |11 -1 -1 0 0 0 0
&, .= H@O)| |0 0 0 0 1 1 -1 -1 10)
b)) |1 -1 0 0 0 0 0 0
@) [0 0 1 -1 0 0 0 0
$®)| [0 0 0 0 1 -1 0 0
&@)) o o o 0 0 0 1 -1

In equation (10), the row denotes the order of the Haar function. The matrix Ci)k «k can be
expressed as

. 1 3 5 2k —1
D = ((D(E)’q)(ﬁ)’q)(ﬁ)""'q)(T)J’ (11)

and using equation (6) we get


http://ijaor.com/article-1-491-en.html

[ Downloaded from ijaor.com on 2026-01-29 |

42 Rostami and Khodabin, / IJAOR Vol. 6, No. 4, 39-52, Autumn 2016 (Serial #22)

1 3.5 2% -1 -

=) f (), [, () | = FT D,
(f(zk) FCS G [ )} -
Form equations (9) and (12) we have.

VAP
K= (q)kxk) Kq)kxka
where
s (7 - 21-1 2p-1
K= =kl ——,—— =1,2,3,...
(klp)kxk’ klp k( 2% ’ 2% J’ Zap 5 737 7k7

and so,

A 1) .
oL, = (ﬂ@,{xk diag (1,1,2,2,2%,..,2%,2°,..,2° ., gg)

[ N —

2? 2} Y
2

2.3 The product operational matrix

The rationalized Haar product matrix is defined by [22],
¥ (1) = DO (1),

Furthermore by (1) and (2) we get,

oo, =¢,(1), ¢=012,.. k-1,

And for p <g , we can write

9,(t) if  ¢,(t)occursduring the first positive half wave of ¢ (1),

¢p (t)¢q )= —¢q @) if ¢q (t) occurs during the second negative half wave of ¢p ®),

0 otherwise.

(12)

(13)

(14)

(15)

(16)

Also, the square of any RHFs is a block pulse functions, with magnitude of 1 during both the

positive and negative half waves of RHFs. Thus, we get,

¢0 ¢1 ¢2 ¢3 ¢4 ¢5
¢1 ¢0 ¢2 _¢3 ¢4 ¢5
¢2 ¢2 M 0 ¢4 _¢5
2
o -4, o DLt 0 0
2
Fos=1g ¢, ¢, 0 bttt 2, 0
4
¢5 ¢5 _¢5 0 0 ¢0 h ¢1 - 2¢2
4
g -4 O 4 0 0 %~
¢7 _¢7 0 _¢7 0 0

%6
~4,

0

9

¢,
-4,

0

-4,

(17
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In general we have

H,
(2) O He )(")U
Wi (1) = (18)

D,
()(")() ()(")()

where

lPlxl(l‘) = ¢0 (t)’

H

T
D(k) (5)0) diag CD(k) & .(¢o(t),¢1(l‘),...,¢,;l(t)}

Furthermore, by multiplying the matrix ¥, (¢) by the vector F in equation (7), we obtain,

P i (OF = Fp (), (19)
where

A

F G

Cr GG
G D ’
G TEG)

Bk = (20)

with
Fiq@)=f,

G =D , .dia v E21)s
E Ty gof’;f"l Si

A

G, =dia ).d
()(k) gkakI oS k-1 ()()

D, i =diag|(fof1rfs )P :
En MRS I ORTS

2.4 Integration operational matrix

Consider the following approximation
[o®@(s)ds = PO(r), (21)
with operational matrix of integration,

2kP ~O
P G B )
L ,
# cD(f)x&) ’
272

Bt = (22)
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where @, =1 and B :%'

So, we can write

[of (s)ds = [y FT d(s)ds = FT PO(t). (23)
Also the integration of cross product of two RH function vector is,
[p@@)®" (t)dt =D, (24)
where D is diagonal matrix given by
p=diagai~ 1 L L L L L.
) L22 72 L23 PE 2877
2 2 2

3 Stochastic integration operational matrix

Here we would like to compute the Ito integral for each ¢, (¢),r =0,1,2,...,k—1 . To illustrate
the calculation procedures, first, let & =0 or k=2 . using equations (1) and (2) we get,

B(l) O£t<%,
Jodo(s)dB(s)=B(1)= | (25)
B(=) —<t«<],
4 2
B() os;%, B(i) 0§t<%,
[o1(s)dB (s) = | S (26)

1 1 3.1
2B(z)-B(t) —<t<l, [2B(2)-B(>) —=<t<l
-B@) 3 -8 3

We can rewrite (25) and (26), in terms of the RHFs ¢, (¢) and ¢,(¢), as follows

Jo®(s)dB (s) =S D), 27)
Where 2 x2 stochastic operational matrix of integration, is given by
1 3 1 3
! B)+BC) B()-BC)
Saxa =% (28)

1 3 1 1 3 1.
B(Z)_B(Z)+2B(E) B(Z)+B(Z)_2B(E)

For convenience, consider

ak
p 2i-1
a,,= Y BEEo), p=122%2% .k, ¢=123,4,..p, (29)
gDk, 2k
p
and
Bog =0pg—Cpige» P=12,222° .k, ¢=1234,.,p-1 (30)

By using equations (29) and (30), S,,, , is written by
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apg B
B +2B(1) a —23(1)'
21 > 11 >

Now, we choose a =1 or k =4. using equations (1) and (2) we get the following consecutive
relations,

1
S2><2 = 5

€1y

1 1
B(— 0<t <—,
@ <3
s ladl
[o90(s)dB(s) =B (t) = L (32)
B(— —<t<—,
) 2 <4
3
B(— —<t<l,
(=) JSt<
1 1
B(— 0<t <—,
@ <3
B(t) 0§t<%, B(%) %smé,
Jo$1(s)dB (s) = | = L (33)
2B(=)-B (¢ —<t<l, 2B(=)—-B (= —<t<—
D-BW) S=t< -8B SSt<y
1 7 3
2B(=)—-B(— —<t<l,
-8B S St<
| B(%) O§t<%,
B(t) 0<t<—
4 1 3 1 1
I o BB sy
[o$2(s)dB (s) = 23(2)—30) th<5, ~ (34)
] ] 1 23(%)_3(%) %St%’
2B(=)-B (<) —<t<l,
4 2 2 23(1)—3(1) S<r<l
4 2 4~ '
1 1
0 0<t <— 0 0<t<—
2 2
1 1 3 5 1 1 3
[0 85 (s)dB (s) = B(t)-B(—) —<t<— = B(=)-B(-) —<t<= (35
2 2 4 8 2 2 4
3 1 3 3 1 7 3
2B(=)-B(—)-B(t) —<tr<l, 2B(=)-B(—)-B(-) —<tr<l1
4 2 4 4 2 8 4

We can rewrite (32), (33), (34 and (35), in terms of the RHFs ¢, (), ¢,(¢), #,(¢) and ¢;(¢), as
follows

[t d(s)dB (s) =S D), (36)

where 4 x4 stochastic operational matrix of integration, is given by


http://ijaor.com/article-1-491-en.html

[ Downloaded from ijaor.com on 2026-01-29 |

46 Rostami and Khodabin, / IJAOR Vol. 6, No. 4, 39-52, Autumn 2016 (Serial #22)

o P 241 243
g 1 By +4B() o —4B(3) 2B4 —2 P43 (37)
4x4 =
4| By =2B(3)+6B(3)  Pa+2B(5)-2B(3) 205 -4B(y) 0
Baz —2B(3)+2B(3) —P43+2B(F)-2B(3) 0 205, —4B(3)
In general we have,
1 C@x(g) U(%)x(%)
Skxk=z v 5 ; (38)
Gk TEE)
where
k - :
U(%)X(%) = ECD(%)X(%) diag (B 15 Br 3> Brss- Br k1)
— k 1 3 5 k-1
D =—diag| a, ,—2B(—),a, ,—-2B(—),a, ,—2B(—),...,a -2B(—) |,
ety = g 228Gy 280Gy 28 Pty 20
And
Crq = a1y C kg

ExE) T2y

is the same matrix S

here S
WHETE Sk Gy

k with this difference that all coefficients B(—2l — 1) ,
X(3) %

for p = 1,2,22,23,...%,1' =1,2,3,..., p are doubled. Namely for £ = 4,8 we have,

X ap B
2072527 B +43(%) ayq —43(%) ’
ayy B 2By 2B4;

Por +8B() i, ~85() 2B, 2,

Caa =0 = Bat — 43(%) + 123(%) By + 43(%) —43(%) 2aty, - SB(%) 0 ’
B —4BC)+ABC) P +4BR)-4BC) 0 2oy —8BC)
2 4 2 4 4

and so,
Vi = By + 2B(%),

1 1 1 1
Bar— 23(5) + 63(2) Bar + 23(5) - 23(2)

V = b
o p 283y e +28hy-283)
43 ) 4 43 ) 4
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By, — 6B(4) +14B(1) By, +2B(3) ~ 2B(3) 2, +4B() —4B() 0

B —6B(H+10B() -4B(H) B +2B(H) - 6B +4B(H) 26, +4B(H) -4B() 0
Fos = B —4B(H)+6B(H)-2B(Y) - +4B(H) - 6B+ 2B() 0 2By —4B() +4B()
B, —2B() +28(3) By, +2B()-2B(%) 0 2By +4B() —4B(D)

So, the Ito integral of every function f{#) can be approximated as follows
[6f ($)dB(s)=[ F" ®(s)dB (s)=F' S®O(). (39)

4 Solving stochastic Ito — Volterra integral equations by using stochastic operational
matrix

Consider the following linear stochastic Ito — volterra integral equation,

X()= f(O)+ ] bt,s) X (s)ds+[yo(t,s)X (s)dB(s), t€[0,1), (40)
where X(2), f(¢), b(t, s) and o(t,s), for t,s €[0,1), are the stochastic processes defined on the
same probability space (Q2,F,P), and X(?) is unknown function. Also B(?) is a Brownian

motion and j(t)a(t,s)X (s)dB(s) is the Ito integral.

By using (6), (9) we have below consecutive approximations

X zxTow)=0" ¢)x,

fO=F o@)=0" (1)F,

b(t,s)=® (BD(s)=D! (s)BT @),

o(t,s)=2® ()T D)= (5)XT D).

In the above approximations, X and F are the RHFs coefficient stochastic vector, and B and

2. are the RHFs coefficient stochastic matrix.
With substituting above approximation in equation (40), we get

xTo@)y=FTo@)+x7 (j{)cp(s)cDT (s)ds)BTCD(t)+XT (j{)@(s)cpT (s)dB(s))zT D). (41)
Let b; be the jth column of the constant matrix B, and o ; be the jth column of the constant

matrix Y., and p, be the ith row of the integration operational matrix P, s;be the ith row of

the stochastic integration operational matrix S.

To illustrate the calculation procedures, we choose o =1 or k =4. Using equations (15), (18),
(19), (20) and (21) we get,

(fh )" (s)ds )| BT 00 = (5 ¥ 4 (5)ds | BT (0)

nP)  pr @) p3 (1) P4P(?) B ()
@) p®@)  ps®@) —psP(1) Y0
PO p @) ES2 () 0 bl )
p4®@(t) —pd(t) 0 2P r) |\ by (1)
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POODT (Db + p, @)D ()b 5+ ps @)D (£)bs + p4D()PT (1)b,
P2 @(ODT ()b + p @)D (1), + ps (DT (H)bs — p, @)D (£)b,

@D ()b + p @D (1)by + L2 0(1) DT (£)bs

Pa®OD” ()b — p, @)D ()b + L2 DD (1)b,

DB+ Py By + 3By + pyBy

P2Bi+ p1By + p3Bs — pyBy

= ) ) ) D(7)
+

p3By+ p3By + 2 2p2 By

paB — pyB+EE2 ;pz B,

P P2 P3 P4 B
1
P> D P3 ~P4 || B
- A e
Py P3 2 0 B
ps —py 0 PSEB
= Ppa B @(1) = Eg O(0).
In general we have,
(lh )" (s)ds) BT 0(0) = By (1), (42)
where
Ekxk = chkkal’
with
_ P(%)x(%) H Ex)
Pka = I—_IT Q s (43)
Ex% A
where
Pl><1 =P

A

H =® ° 2 e
(%)x(%) (%)X(%) diag (p1§+1ap1§+25 sPk j,

T
_ g 2 -1 T
Q(%)X(%) =diag [q)(g)x(g)-(l?l,l?zrnapg) } .

and
B,
B,
B kxl — .
By
Similarly,
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(I @) (5)aB(5)| LT D(1) = By ), (44)
where
B =S8 kxk@kxla
with
~ SO My
Skxk = r A , (45)
O )
where
Stx1 =515
M gy = Pty diag (S R j
r
T

A(%)X(%) =diag d)(,é)x(,é).(sl ’SZ’W’SIEJ
and

%

>
Yea=|

o
With substituting relations (42) and (44) in (41), we get
XTot)=zFTo@)+XTE®@)+XT Ed().
Then,
xTU-E-E)=F". (46)
So, by setting N=(/-F —E)T and replacing = by =, we will have,
NX =F. (47)

Which is a linear system of equations that gives the approximate RH functions coefficient of
the unknown stochastic processes X(?), so

X @) zxTo@).

5 Numerical examples

In this section, we present a selection of examples to illustrate the efficiency of the method
proposed in Section 4.
Example 1. Consider the following linear stochastic Ito — Volterra integral equation,

1

S(t) = =+ JoIn(L+5)S(s)ds + [ysS(s)dB(s)  s,t€[0,1), (48)
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1 (1+r)1n(1+z)—z—%+ I tsdB(s)
with the exact solution S(t):%e 0 , for 0<t<1, where S(z) is and

unknown stochastic processes defined on the probability space (Q,F,P), and B(?) is a
Brownian motion process. The approximate solutions for £ =2,4,8,16 and exact solution are
shown in Table 1.

Table 1 The approximate solutions for £ = 2,4,8,16 and exact solution

t k=2 k=4 k=8 k=16 Exact solution

0 0.012446 0.012506 0.013538 0.013300 0.013333
0.1 0.012446 0.012506 0.013538 0.013570 0.014032
0.2 0.012446 0.012506 0.012177 0.014007 0.014605
0.3 0.012446 0.020903 0.015059 0.012808 0.012908
0.4 0.012446 0.020903 0.018561 0.016015 0.013614
0.5 0.009464 0.009475 0.015079 0.014059 0.014736
0.6 0.009464 0.009475 0.015079 0.015269 0.011277
0.7 0.009464 0.009475 0.011106 0.017104 0.012905
0.8 0.009464 0.015404 0.008001 0.013479 0.012024
0.9 0.009464 0.015404 0.010052 0.008253 0.009568

1 0.009464 0.015404 0.010052 0.007738 0.008951

Error 0.0077007 0.0084467 0.0084499 0.0109982

Example 2. Consider the following linear stochastic Ito — volterra integral equation,

X(@t)= $+ Jocos(s) X (s)ds + [osin(s) X (s)dB(s) s,t €[0,1), (49)
1 —i+sin(t)+M+ I tsin(s)dB(s)
with the exact solution X ()= 20¢ 8 <o , for 0<t<1, where X(?) is an

unknown stochastic processes defined on the probability space (Q,F,P), and B(?) is a
Brownian motion process. The approximate solutions for £ =2,4,8,16 and exact solution are
shown in Table 2.

Table 2 The approximate solutions for £ = 2,4,8,16 and exact solution

t k=2 k=4 k=8 k=16 Exact solution

0 0.008788 0.009303 0.009309 0.008954 0.008333
0.1 0.008788 0.009303 0.009309 0.010751 0.009213
0.2 0.008788 0.009303 0.011334 0.012490 0.010558
0.3 0.008788 0.017452 0.011897 0.014532 0.008043
0.4 0.008788 0.017452 0.012129 0.019704 0.009639
0.5 0.010013 0.013618 0.011407 0.013463 0.011868
0.6 0.010013 0.013618 0.011407 0.020933 0.011711
0.7 0.010013 0.013618 0.011816 0.020932 0.010444
0.8 0.010013 0.014921 0.014287 0.019602 0.013001
0.9 0.010013 0.014921 0.008403 0.006376 0.010339

1 0.010013 0.014921 0.008403 0.005247 0.016419

Error 0.0078348 0.0090492 0.0086805 0.0075787
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6 Conclusion

Because for some SDE's that can be written as Volterra integral equations, it is impossible to
find the exact solution of Eq. (40), it would be convenient to determine its numerical solution
based on stochastic numerical analysis. Using Rationalized Haar functions as basis functions
to solve the linear stochastic Ito — Volterra integral equations is very simple and effective in
comparison with other methods. Here, the applicability and accuracy of this method discussed
in two examples. The results of numerical solution. So, if we encounter with the SDE's similar
to Volterra integral equations as we can't solve them analytically, we can use this method.
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