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Abstract  In this paper, we considered a Stochastic Interval-Valued Linear Fractional Programming 
problem(SIVLFP). In this problem, the coefficients and scalars in the objective function are fractional-
interval, and technological coefficients and the quantities on the right side of the constraints were 
random variables with the specific distribution. Here we changed a Stochastic Interval-Valued 
Fractional Programming problem to an optimization problem with an interval-valued objective 
function, so that its boundaries are fractional functions. A numerical example was presented to 
demonstrate the effectiveness of the proposed method. 
 
Keywords:  Linear Fractional Programming, Interval-Valued Function, Interval-Valued Linear 
Fractional Programming, Chance-Constrained Programming. 
 
 
1 Introduction 
 
During the modeling of real-world practical issues, it was observed that some parameters of 
the problem were not definitely clear. In particular, for an optimization problem, it is possible 
that the parameters be imprecise. For instance, the right side quantities in a linear 
programming problem are imprecise or the coefficients of the objective function are fuzzy [1]. 

There are several approaches for uncertainty model in optimization problems, such as 
stochastic and fuzzy optimizations. Here, we considered an optimization problem with an 
interval-valued objective function, so that the existing coefficients in the constraints are the 
random variable. Tigan, Minasian, Stancu [2,3] analyzed these kinds of problems. Hsien-
Chung wu [4,5] obtained and proved the Karush-Kuhn-Tucker (K.K.T) conditions for each of 
the optimization problems with interval-valued objective function. 

So far, Fractional programming has attracted many researchers. The main reason of its 
attraction is due to this fact that if we consider the optimization ratio between physical and 
economical quantities, then the programming models will be more consistent with the real 
issues. Generally, the fractional optimization is the optimization of one or more ratios [6]. 
Naturally, these models are created in decision making situations, where the simultaneous 
optimization of several ratios is required, such as production planning, financial planning, 
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healthcare planning, etc. So, fractional planning as an approach to improved certain 
programming [7], has two advantages: first, it is possible to use different objectives as the 
uniform objective function consistent with the preservation of its features and without any 
change in size. Second, it is possible to estimate the system efficiency as the ratio of two 
magnitudes by designing the objective function, for example, the ratio of costs to returns, the 
ratio of costs to time, etc. The fractional programming focused mainly on the engineering, 
economics and environmental management [7]. 
     Several approaches were proposed for the fractional programming problems, such as 
variable transformation method [8] and the updated objective function [9]. There are some 
new methods in this field, for further readings see [10-12].  

Here, we introduced an interval-valued linear fractional programming problem, and then 
we transformation it to an optimization problem with an interval-valued target function. After 
explaining some definitions required for interval account and some introductions about the 
probability in section 2, we introduced the Stochastic Interval-Valued Fractional 
Programming problem and also we stated the certain equation forms for the constraints in 
section 3. In section 4, we solved a numerical example to show the effectiveness of the model 
and finally we presented some results in section 5. 
 
 
2 Preliminaries 
 
In this section, we recall some basic definitions and properties of interval arithmetic and 
Axiomatic Probability. 
 
 
2.1 Interval Arithmetic 
 
Definition 2.1. An interval is defined by an ordered pair of brackets as  

 L U L UA a ,a a : a a a , a  ,          
where ܽ௅ and ܽ௎ are the left and right limits of  ܣ, respectively. The set of all closed and 
bounded interval in ܴ will be shown by ܫ.  
Denote the center and radius of  ܣ respectively as 

   1 1
2 2

C U L R U LA a a ,        A a a            

Definition 2.2. Let ∗ denote one of the arithmetic operations +, −,× or ÷ and let 
L UA a ,a     and L UB b ,b     so that A , B I , then the generalization of ordinary 

arithmetic to closed intervals is known as interval arithmetic, and is defined by: 
 A* B a* b : a A ,b B ,     

where we assume 0 B  in the case of division. 
Let k   be a constant. from Definitions 2.1 and 2.2, we can see that  

L L U UA B a b ,a b      ,  
L U U LA B a b ,a b      , 
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0

0

L U
L U

U L

ka ,ka        if   k ,
kA k a ,a

ka , ka       if   k , 

           
  

   L L L U U L U U L L L U U L U UA.B min a b ,a b ,a b ,a b , max a b ,a b ,a b ,a b    ,  

1 1 0L U
U LA B a ,a , ,         B .

b b
        

  

Definition 2.3. Let L UA a ,a     and L UB b ,b     be two closed, bounded, real intervals in 

then we say that A ,ܫ B , if and only if L La b and U Ua b   
and we say A B  if and only if 
 

L L L L L L

U U U U U U

a b a b a b
   o r         or      

a b a b a b
    
  

    
  

 
 
2.2 Axiomatic Probability 
 
The primary reference for sections 2.2 and 2.3 are [8] and [11]. 

Probability theory is derived from a small set of axioms and a minimal set of essential 
assumptions. The first concept in probability theory is the sample space, which is an abstract 
concept containing primitive probability events. 
Definition 2.4. The sample space is a set Ω  that contains all possible outcomes. 
Definition 2.5. An event   is a subset of the sample space Ω . An event may be any subsets 
of the sample space (including the entire sample space), and the set of all events is known as 
the event space. 
Definition 2.6. The set of all events in the sample space Ω  is called the event space and is 
denoted ℱ. 

Assembling a sample space, event space and a probability measure into a set produces 
what is known as a probability space. 
Definition 2.7.  A probability space is denoted using the tuple (Ω, ℱ, ܲ) where Ω is the 
sample space,   is the event space and P  is the probability set function which has domain 
 .  
 
 
2.3 Random Variables 
 
This section covers univariate random variables. 
Definition 2.8. Let  Ω, ,P  be a probability space. If  X : Ω   is a real-valued function 
have as its domain elements of Ω , then X  is called a random variable. 
Definition 2.9. A random variable is called discrete if its range consists of a countable 
(possibly infinite) number of elements. 

Discrete random variables are characterized by a Probability Mass Function (PMF) which 
gives the probability of observing a particular value of the random variable. 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ao
r.

co
m

 o
n 

20
26

-0
1-

31
 ]

 

                               3 / 9

http://ijaor.com/article-1-545-en.html


26 S. H. Nasseri and S. Bavandi / IJAOR Vol. 7, No. 1, 23-31, Winter 2017 (Serial #23) 

Definition 2.10. The probability mass function  for a discrete random variable ܺ is defined as 
   f x P x , for all  x R X   and   0f x  , for all  x R X , where   R X  is the 

range of ܺ (i.e. the values for which ܺ is defined). 
Definition 2.11. A random variable is called continuous if its range is uncountably infinite 
and there exists a non-negative-valued function  f x  defined or  all ݔ ∈ (−∞, ∞) such that 

for any event      
x B

B R X , P X f x dx


    and   0f x  , for all  x R X , where 

 R X  is the range of X  (i.e. the values for which X is defined). 
The PMF of a discrete random variable is replaced with the probability density function 

(pdf) for continuous random variables. 
Definition 2.12. For a continuous random variable, the function ݂ is called the Probability 
Density Function (PDF). A function f :    is a member of the class of continuous 

density functions if and only if   0f x  , for all  x ,     and   1f x




 . 

Definition 2.13. The Cumulative Distribution Function (CDF) for a random variable X  is 
defined as    F c P x c  , for all  c ,   . 
The cumulative distribution function is used for both discrete and continuous random 
variables. When ܺ is a discrete random variable, the CDF is 
   

s x

F x f s


 , 

for  ( , )c    and when X  is a continuous random variable, the CDF is 

   
x

F x f s ds


  , 

for  ( , )x    . 
 
 
2.4 Interval-Valued Function 
 
The reference for  this section is [13]. 
Definition 2.14. A function nf : I  is called an interval-valued function (because ݂(ݔ) 
for each nx  is a closed interval in  ). Similar to interval notation, we denote the interval 
valued function f with      L Uf x f x , f x     where for every nx      L Uf x , f x  

are real valued functions and L Uf ( x ) f ( x ).  
Proposition 2.1. Let f  be an interval valued function defined on n . Then ݂ is continuous 
at nc   if an only if Lf  and Uf  are continuous at c . 
Definition 2.15. Let X  be an open set in  . An interval valued function f : X I  with 
     L Uf x f x , f x     is called weak differentiable at 0x , if the real valued functions  
Lf ( x ) and Uf ( x ) are differentiable (usual differentiability) at 0x . 

Definition 2.16. We define a linear fractional function  
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  cxF x
dx








 

where  1 2
t n

nx x , x , , x   ,  1 2
t n

nc c ,c , ,c   ,  1 2
t n

nd d ,d , ,d    and 
,   are real scalars. 

 
 
3  Stochastic Interval-Valued Linear Fractional Programming(SIVLFP) 
 
Stochastic Interval-Valued Linear Fractional Programming can be formulated as follows 

1

1

1

z = 

. .

,

0.

n

j j
j
n

j j
j

n
s s
ij j i

j

j

c x
Min

d x

s t

a x b

x

























 (1) 

where 1 2 1 1s s
j j ij ic ,d I , j , , ,n , a ,b , j , , n , i , , m ,        are independent random 

variables with known distribution functions. We denote L
jc  and L

jd  the lower  bounds of the 

intervals jc  and jd  respectively i.e. 1 2
L L L L

nc ( c ,c ,...,c ) and also  1 2
L L L L

nd d ,d , ,d   

where ௝ܿ
௅ and ௝ܿ

௎ are real scalars for 1, ,j n   and nx  , similarly we can define U
jc  and 

U
jd . Also L U,      , L U,      . From the fact that 1 1s

ija , j , ,n , i , , m     and 

௜ܾ
௦ , ݅ = 1, … , ݉ are independent random variables with the normal distribution , thus by 

incorporating  predetermined tolerance measures i , that 0 1 1i , i , ,m    , and by 
utilizing the chance-constrained approach [13], the set of stochastic constraints of problem (1) 
can be transformed to their deterministic equivalents as follows 
 

1

Pr , 1,..., ,
n

s s
ij j i i

j
a x b i m



 
   

 
  

 
Let  E .  and  Var .  be the mean and the variance of random variables s

ija  and s
ib  

respectively, Therefore we have  

         1 2

1 1

1 , 1,..., .
n n

s s s s
ij j i i ij j i

j j

E a x Var b Var a x E b i m

 

       (2) 

 
where  1Φ .   is the inverse distribution function of the standard normal distribution.  

So we can rewrite (1) as follows 
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         1 2

1 1

( )( )  
( )

. .

        1 , 1,..., ,

0.

n n
s s s s
ij j i i ij j i

j j

j

z xMin f x
w x

s t

E a x Var b Var a x E b i m

x



 



    



 
 (3) 

where (ݔ)ݖ,   are interval-valued linear functions as (ݔ)ݓ
     
     

L U L L U U

L U L L U U

z x z x , z x c x ,c x

w x w x ,w x d x ,d x

 

 

         
         

 

 
So we have 

         

1 1

1 1

1 2

1 1

,
( )

,

. .

1 , 1,..., ,

0.

n n
L L U U
j j j j

j j

n n
L L U U
j j j j

j j

n n
s s s s
ij j i i ij j i

j j

j

c x c x
Min f x

d x d x

s t

E a x Var b Var a x E b i m

x

 

 



 

 



 

 
  

 
 

  
 

    



 

 

 

 (4) 

 
Also, we can consider another kind of problem (4) as follows 

         1 2

1 1

( ) ( ), ( )

. .

    1 , 1,..., ,

0.

L U

n n
s s s s
ij j i i ij j i

j j

j

Min f x f x f x

s t

E a x Var b Var a x E b i m

x



 

   

    



 
 (5) 

 
Theorem 3.1. Any Stochastic Interval-Valued Linear Fractional Programming problem in the 
form (4) under some assumptions can be converted to an Interval-Valued Linear Fractional 
Programming problem in the form (5). 
Proof: See [14] 
Below definition and theorem took from [14] that will be useful in our discussion. 
Definition 3.1.  Let *x  be a feasible solution to the problem (5). We say that *x  is a 
nondominated solution of  problem (5), if there exist no feasible solution x such that 

*f ( x ) f ( x ).  In this case, we say that  *f x  is the nondominated objective value of  f . 
Consider the following optimization problem corresponding to problem (5) 
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         1 2

1 1

( ) ( ) ( )
. .

     1 , 1,..., ,

0.

L U

n n
s s s s
ij j i i ij j i

j j

j

Min g x f x f x
s t

E a x Var b Var a x E b i m

x



 

 

    



 
  (6) 

For solve problem (5), we use the theorem. 
Theorem3.2.  If  *x  is an optimal solution of problem (6), then *x  is a nondominated 
solution of problem (5). 
Proof: See [15]. 
 
 
4 Numerical Example 
 
In this section, we solve a numerical example using the proposed method. Consider the 
following optimization problem with random variable coefficients, where the coefficients of 
the left-hand sides and the right-hand  are independent random variables with the normal 
distribution: 

   1 2 3

1 2 3

11 1 12 2 13 3 1

21 1 22 2 23 3 2

31 1 32 2 33 3 1

1 2 3

3 5 71, 2 3,7 , , 4
2 2 2( )

1 3 7 1,1 ,1 , 2 ,1
2 4 8 2

. .
,

,

,
, , 0.

s s s s

s s s s

s s s s

x x x
Min f x

x x x

s t
a x a x a x b

a x a x a x b

a x a x a x b
x x x

           
                       

  

  

  


  (7) 

 
For the above normal random interval variables, assume that  

 
 
 

2
1

2
2

2
3

6 3

8 1

13 0 5

s

s

s

b ~ N , ,

b ~ N , ,

b ~ N , . .

  

and 
 
Table 1 The expectations and variances of the technical coefficients 

33
sa  32

sa  31
sa  23

sa  22
sa  21

sa  13
sa  12

sa  11
sa    

1  1  1  1 3  2  1  1  1  (.)E 
0 25.  0 25.  1  1  0 5.  0 5.  0 5.  1  0 5.  (.)Var  

 
Assume that the Decision Maker (DM), tolerance measures as 0 8 1 2 3. , , ,i i   .  

Problem (7) by using Theorem 3.1 and expression (2) be transformed into the following 
equivalent problems 
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1 2 3 1 2 3

1 2 3
1 2 3

-1 2 2 2
1 2 3 1 2 3

1 2 2 2
1 2 3 1 2 3

1 2 2
1 2 3 1 2 3

3 7 53 2 7 4
2 2 2( ) , 1 3 7 12 1

2 4 8 2
. .

(0.2) 9 0.5 0.5 6,

2 3 (0.2) 1 0.5 0.5 8,

 (0.2) 0.25 0.25 0.5

x x x x x x
Min f x

x x x x x x

s t

x x x x x x

x x x x x x

x x x x x x





       
       
 

      

       

      2

1 2 3

13,
, , 0.x x x





  (8) 

 
with regard to the of  problem (5), we have 

1 2 3 1 2 3

1 2 3
1 2 3

1 2 2 2
1 2 3 1 2 3

1 2 2 2
1 2 3 1 2 3

1 2 2 2
1 2 3 1 2 3

1 2

3 7 53 2 7 4
2 2 2( ) 1 3 7 12 1

2 4 8 2
. .

(0.2) 9 0.5 0.5 6,

2 3 (0.2) 1 0.5 0.5 8,

(0.2) 0.25 0.25 0.5 13,
 ,

x x x x x x
Min g x

x x x x x x

s t

x x x x x x

x x x x x x

x x x x x x
x x







     
 

     

      

       

      

3, 0.x 

  (9) 

 
As a result, a nondominated solution for (7) is * (0.8088756,0,5.140197)x   with 

*( ) 4.412911g x  , which is the optimal solution of (9). 
 
 
5 Conclusion 
 
In this paper, at first, we introduced two kinds of linear fractional programming problems 
with interval-valued objective functions and constraints with random coefficients. Then, after 
imposing some changes, we obtained a nondominated solution for the main linear fractional 
programming problems with interval-valued objective function. The model proposed in this 
study was an uncertainty mode where the coefficients of objective function were as interval 
imprecise values and the coefficients in the constraints and the right side values were a 
random variable. works to investigate an approach to solving the appropriate nonlinear 
fractional programming problems for solving the quadratic fractional programmin is in 
progress. The problem can be studied for cases where the coefficients of the objective 
function and the coefficients in constraints are either interval or random-interval. It can be 
also considered in its random-fuzzy mode. 
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