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Abstract In this paper, we considered a Stochastic Interval-Valued Linear Fractional Programming
problem(SIVLFP). In this problem, the coefficients and scalars in the objective function are fractional-
interval, and technological coefficients and the quantities on the right side of the constraints were
random variables with the specific distribution. Here we changed a Stochastic Interval-Valued
Fractional Programming problem to an optimization problem with an interval-valued objective
function, so that its boundaries are fractional functions. A numerical example was presented to
demonstrate the effectiveness of the proposed method.
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1 Introduction

During the modeling of real-world practical issues, it was observed that some parameters of
the problem were not definitely clear. In particular, for an optimization problem, it is possible
that the parameters be imprecise. For instance, the right side quantities in a linear
programming problem are imprecise or the coefficients of the objective function are fuzzy [1].

There are several approaches for uncertainty model in optimization problems, such as
stochastic and fuzzy optimizations. Here, we considered an optimization problem with an
interval-valued objective function, so that the existing coefficients in the constraints are the
random variable. Tigan, Minasian, Stancu [2,3] analyzed these kinds of problems. Hsien-
Chung wu [4,5] obtained and proved the Karush-Kuhn-Tucker (K.K.T) conditions for each of
the optimization problems with interval-valued objective function.

So far, Fractional programming has attracted many researchers. The main reason of its
attraction is due to this fact that if we consider the optimization ratio between physical and
economical quantities, then the programming models will be more consistent with the real
issues. Generally, the fractional optimization is the optimization of one or more ratios [6].
Naturally, these models are created in decision making situations, where the simultaneous
optimization of several ratios is required, such as production planning, financial planning,
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healthcare planning, etc. So, fractional planning as an approach to improved certain
programming [7], has two advantages: first, it is possible to use different objectives as the
uniform objective function consistent with the preservation of its features and without any
change in size. Second, it is possible to estimate the system efficiency as the ratio of two
magnitudes by designing the objective function, for example, the ratio of costs to returns, the
ratio of costs to time, etc. The fractional programming focused mainly on the engineering,
economics and environmental management [7].

Several approaches were proposed for the fractional programming problems, such as
variable transformation method [8] and the updated objective function [9]. There are some
new methods in this field, for further readings see [10-12].

Here, we introduced an interval-valued linear fractional programming problem, and then
we transformation it to an optimization problem with an interval-valued target function. After
explaining some definitions required for interval account and some introductions about the
probability in section 2, we introduced the Stochastic Interval-Valued Fractional
Programming problem and also we stated the certain equation forms for the constraints in
section 3. In section 4, we solved a numerical example to show the effectiveness of the model
and finally we presented some results in section 5.

2 Preliminaries

In this section, we recall some basic definitions and properties of interval arithmetic and
Axiomatic Probability.

2.1 Interval Arithmetic

Definition 2.1. An interval is defined by an ordered pair of brackets as
A z[aL,aU]z{a:aL Saéa”,aeR},
where al and aV are the left and right limits of A, respectively. The set of all closed and

bounded interval in R will be shown by I.
Denote the center and radius of A respectively as

C l U L R 1 U L
A —E(a +a ) A —E(a —a )
Definition 2.2. Let * denote one of the arithmetic operations +,—,X or <+ and let
A :[aL ,aU] and B :[bL ,bU] so that 4,B eI, then the generalization of ordinary
arithmetic to closed intervals is known as interval arithmetic, and is defined by:
A*B ={a*b:aeA,b EB},

where we assume 0 ¢ B in the case of division.
Let £ €R be a constant. from Definitions 2.1 and 2.2, we can see that

A+B =[a" +b",a" +b" ],
A-B=[a"-b",a" -b"],


http://ijaor.com/article-1-545-en.html

[ Downloaded from ijaor.com on 2026-01-31 ]

A Suggested Approach for Stochastic Interval-Valued Linear Fractional Programming problem 25

[ ka" ka" ] if k=0,

kAzk[aL,au]: [ka”,kaL] o

A.B = [min {aLbL ,atb? ,a’b" ,anU},max {aLbL ,a'b? ,a"b* ,a’b" }]

A+B=[aL,aU][bLU,bLL}, Og¢B.

Definition 2.3. Let 4 = [aL,aU] and B = [bL ,bU] be two closed, bounded, real intervals in

1, then we say that 4 < B , if and only if ¢* <b" and a” <b"
and we say 4 <B if and only if

at <b* at <b* at <b*
or or
a¥’ <b? a’ <b? a¥’ <b?

2.2 Axiomatic Probability

The primary reference for sections 2.2 and 2.3 are [8] and [11].

Probability theory is derived from a small set of axioms and a minimal set of essential
assumptions. The first concept in probability theory is the sample space, which is an abstract
concept containing primitive probability events.

Definition 2.4. The sample space is a set £2 that contains all possible outcomes.

Definition 2.5. An event @ is a subset of the sample space € . An event may be any subsets
of the sample space (including the entire sample space), and the set of all events is known as
the event space.

Definition 2.6. The set of all events in the sample space £ is called the event space and is
denoted F.

Assembling a sample space, event space and a probability measure into a set produces
what is known as a probability space.

Definition 2.7. A probability space is denoted using the tuple (Q,F,P) where Q is the
sample space, F is the event space and P is the probability set function which has domain
weF.

2.3 Random Variables

This section covers univariate random variables.
Definition 2.8. Let (Q F ,P) be a probability space. If X : Q — R is a real-valued function

have as its domain elements of 2 , then X is called a random variable.
Definition 2.9. A random variable is called discrete if its range consists of a countable
(possibly infinite) number of elements.

Discrete random variables are characterized by a Probability Mass Function (PMF) which
gives the probability of observing a particular value of the random variable.
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Definition 2.10. The probability mass function for a discrete random variable X is defined as
f(x)=P(x), for all x eR(X)and f(x)=0, for all x eER(X), where R(X) is the

range of X (i.e. the values for which X is defined).
Definition 2.11. A random variable is called continuous if its range is uncountably infinite

and there exists a non-negative-valued function f (x) defined or all x € (—o0,0) such that

for any event B cR(X ),P(X )= Jf (x)dx and f (x)=0, for all x eR(X ), where

xeB

R (X ) is the range of X (i.e. the values for which X is defined).

The PMF of a discrete random variable is replaced with the probability density function
(pdf) for continuous random variables.
Definition 2.12. For a continuous random variable, the function f is called the Probability
Density Function (PDF). A function f :R — R is a member of the class of continuous

density functions if and only if /" (x )2 0, for all x €(—o0, ) and If (x)=1.

Definition 2.13. The Cumulative Distribution Function (CDF) for a random variable X is
defined as F (c)=P(x <c), forall ¢ e(-o0, ).

The cumulative distribution function is used for both discrete and continuous random
variables. When X is a discrete random variable, the CDF is

F(x)=27(s),

§<x

for ¢ € (—o,o)and when X is a continuous random variable, the CDF is
F(x)z If (S)ds,

for x €(—o0,0).

2.4 Interval-Valued Function

The reference for this section is [13].
Definition 2.14. A function f : R" — [ is called an interval-valued function (because f(x)
for each x € R"is a closed interval in R ). Similar to interval notation, we denote the interval

valued function f with f (x )= [fL (x).fY (x )] where for every x eR" ' (x),/ Y (x)

are real valued functions and 1 “(x ) <fY(x).

Proposition 2.1. Let / be an interval valued function defined on R" . Then f is continuous
at c eR" ifanonlyif f* and " are continuous at c .
Definition 2.15. Let X be an open set in R. An interval valued function f : X — [ with

f (x ) = [f g (x ) Y (x )] is called weak differentiable at x, if the real valued functions

f*(x)and fY(x ) are differentiable (usual differentiability) at x,, .
Definition 2.16. We define a linear fractional function
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o +a
F(x)zdx +p

where x =(x,,x,,....x,) eR", c¢=(c,c,,....c,) eR", d=(d,,d,,....d,) eR" and

n

a, B are real scalars.

3 Stochastic Interval-Valued Linear Fractional Programming(SIVLFP)

Stochastic Interval-Valued Linear Fractional Programming can be formulated as follows

(M

St.

n
s s
2 ayx, <b/,
j

x/.ZO.

N

where ¢;,d, el,j=12,...,n,a;,b’,j=1..,n,i=1..m, are independent random

variables with known distribution functions. We denote cf and d /L the lower bounds of the

intervals ¢, and d, respectively ie. ¢” =(c¢/,cy,...c,)and also d* :(dlL,dzL,...,dL)

n

where CjL and ch are real scalars for j =1,...,n and x € R", similarly we can define ci/ and

d . Also a :[aL,aU], B :[ﬁL,ﬁU]. From the fact that a;,j =1,...,n,i =1,...,m and
b},i =1,..,m are independent random variables with the normal distribution , thus by
incorporating predetermined tolerance measures f,, that 0<f <l,i =1,...,m, and by

utilizing the chance-constrained approach [13], the set of stochastic constraints of problem (1)
can be transformed to their deterministic equivalents as follows

n
Pr[Za;xj gb;jz i =1,...,m,

J=1

Let E () and Var () be the mean and the variance of random variables al_‘; and b’
respectively, Therefore we have

iE (a;. )xj —q)l(l—ﬁi)\/Var(bf)+Zn:Var (a;. )sz <FE (bf), i=1..,m. 2)

where @' () 1s the inverse distribution function of the standard normal distribution.

So we can rewrite (1) as follows


http://ijaor.com/article-1-545-en.html

[ Downloaded from ijaor.com on 2026-01-31 ]

28 S. H. Nasseri and S. Bavandi / IJAOR Vol. 7, No. 1, 23-31, Winter 2017 (Serial #23)

3)

E (), -7 (1- ,B\/V (o) i <6 51). 4 =1eam,
0

>
), w(x) are interval-valued linear functions as

(x
z(x):[zL(x),zU(x)]—[c x+a’,c'x +a ]
w(x)z[wL(x),wU(x)}z[de+,BL,de+ﬁU]

So we have

Setx, vt St v |
{Zd x; +p Zd”x +pY }

Min f (x)=

4

St.

E(a))x, 0 (1- ,B\/ ()3 a3 < 1), 4 =1,

Also, we can consider another kind of problem (4) as follows
Min f (x)=[f"().f ¥ (x)]

St.

&)

(a1 ,B\/ ()3 (a3 <E(b0). i =1,
0.

Theorem 3.1. Any Stochastic Interval-Valued Linear Fractional Programming problem in the
form (4) under some assumptions can be converted to an Interval-Valued Linear Fractional
Programming problem in the form (5).

Proof: See [14]

Below definition and theorem took from [14] that will be useful in our discussion.

Definition 3.1. Let x  be a feasible solution to the problem (5). We say that x~ is a
nondominated solution of problem (5), if there exist no feasible solution x such that

f(x)<f(x"). Inthis case, we say that f (x *) is the nondominated objective value of f .

Consider the following optimization problem corresponding to problem (5)
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Min g(x)=f"(x)+/"(x)

St.

ZE(G;)X (1-8,) \/V ( ) ZVar(U) _E(bl.“), P=1..m, (6)

x; 20.
For solve problem (5), we use the theorem.

Theorem3.2. If x  is an optimal solution of problem (6), then x is a nondominated
solution of problem (5).
Proof: See [15].

4 Numerical Example

In this section, we solve a numerical example using the proposed method. Consider the
following optimization problem with random variable coefficients, where the coefficients of
the left-hand sides and the right-hand are independent random variables with the normal
distribution:

[1.2]x, +[3.7]x, +B ﬂ 3+B,4}

et | o] 31
2 4 8 2

S S S S
a; x,+a,x,+a,x,<b/,

Minf (x)=

S S S S
ay X, +a5x,+ax, <b;,
S S S S
Ay X | +aA3X , +a3X , <b),

XX ,,x,20.

For the above normal random interval variables, assume that

b ~ N(6,32),
by~ N (8,1°),
by ~ N (13,0.5%).
and

Table 1 The expectations and variances of the technical coefficients

aj, 4, dy ay, dy ass a3 a as,
E() 1 1 -1 -2 3 1 1 1 1
Var() 0.5 1 0.5 0.5 0.5 1 1 0.25 0.25

Assume that the Decision Maker (DM), tolerance measures as 3, =0.8, i =1,2,3.

Problem (7) by using Theorem 3.1 and expression (2) be transformed into the following
equivalent problems
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x,+3x, +§x3 +; 2x,+7Tx, +§x3 +4

Min f(x)= ;
X, +x,+2x,+1 1x1+§x2+1x3+1
2 4 8 2
St.
i CR 2 (8)
X, +X,—x, — D7 (0.2)/9+0.5x 2 +x2+0.5x 2 <6,
— 2, +3x, 4+, —D(0.2)y/14 0.5 2 +0.5x 2 +x 2 <8,
X, X, 4x, D7 (0.2)y/0.25+x 2 +0.25x 2 +0.5x 2 <13,
XX ,,x,20.
with regard to the of problem (5), we have
x1+3x2+§x3+z 2x1+7x2+§x3+4
: _ 2 2
Min g(x)= +1 3 7 I
X, +x,+2x5+1 LI P
2 4 8 2
St.
)

x40, =, @7 (02)0+ 0.5 ] +0.5x] <6,

—2x, 43, +x,— D7(0.2)4/140.5x 2 +0.5x 2 +x 2 <8,

X, 4x,+x, —D7(0.2),/0.25+x 2 +0.25x 2 +0.5x 2 <13,

XX ,,x,20.

As a result, a nondominated solution for (7) is x =(0.8088756,0,5.140197) with
2(x")=4.412911, which is the optimal solution of (9).

5 Conclusion

In this paper, at first, we introduced two kinds of linear fractional programming problems
with interval-valued objective functions and constraints with random coefficients. Then, after
imposing some changes, we obtained a nondominated solution for the main linear fractional
programming problems with interval-valued objective function. The model proposed in this
study was an uncertainty mode where the coefficients of objective function were as interval
imprecise values and the coefficients in the constraints and the right side values were a
random variable. works to investigate an approach to solving the appropriate nonlinear
fractional programming problems for solving the quadratic fractional programmin is in
progress. The problem can be studied for cases where the coefficients of the objective
function and the coefficients in constraints are either interval or random-interval. It can be
also considered in its random-fuzzy mode.
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