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Abstract In this paper, we propose a new fixed point model for the linear complementarity problem 

(LCP). The equivalent of this model and LCP has been proved. The structure of this model is simple 

and can be applied to iterative methods for LCPs and also other complementarity problems.  
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1 Introduction 

 

For a given real vector nRq and a given matrix n nA R  , the linear complementarity 

problem abbreviated as LCP (A, q), consists in finding vectors nRz  such that 

0, 0

0T

w Az q

z w

z w

  


 




                                                                                                                                          (1)  

where Tz denotes the transpose of the vector z . Many problems in various scientific 

computing, economics and engineering areas can lead to the solution of LCP and its 

generalizations. For example, quadratic programming, Nash equilibrium point of a bimatrix 

game, nonlinear obstacle problems, invariant capital stock, optimal stopping, contact and 

structural mechanics, free boundary problem for journal bearings, traffic equilibriums, 

manufacturing systems, etc. For more details, see [1-3] and the references therein. Because of 

the wide applications, the research on the numerical methods for solving (1) has attracted 

much attention.  

    Numerous methods exist for solving the linear complementarity problems (LCPs). 

Numerical algorithms to solve Eq. (1) fall in two main classes, direct and iterative. Direct 

methods are those based on the process of pivoting, that is, exchanging the roles of dependent 

and independent variables (similar to basic and non-basic variables in a system of equations), 

while iterative methods are those which produce a (possibly infinite) sequence of iterates 

(trial solutions) which converge to a solution [1-3]. 

One of the oldest iterative methods related to the linear complementarity problem is due 

to Hildreth [4], who designed the procedure to solve a strictly convex quadratic program. 
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Hildreth stated its Kuhn-Tucker conditions and used the nonsingularity of the Hessian matrix 

of the objective function to eliminate the primal variables. What remains after this operation 

is a linear complementarity problem in variables are Lagrange multipliers and the matrix A  is 

symmetric and positive semi-definite. A more general iterative method, attributed to 

Christopherson [5], has been analyzed and clarified by Cryer [6-7], and it is often cited as 

Cryer's method. It is a successive over-relaxation (SOR) method proposed for the solution of 

the free-boundary problem for journal bearings; see also [8-9]. 

 Generally, there are some iterative methods for the solution of the LCP, including the 

projected methods [10-23], the modulus algorithms [24-26] and the modulus-based matrix 

splitting iterative methods [27-32], see [33] for a survey of the solvers for LCP (1). 

In this paper, we study all the fixed point models for linear complementarity problems 

(LCPs) and present a new model. Finally, we prove the equivalent of the LCP and our fixed-

point model. 

 

 

2 The existing fixed-point models 

 

In this section, we study the existing fixed-point model for the LCP. 

 

 

2.1 Projected fixed-point model 

 

Let us consider LCP (1). ( , )LCP A q  is equivalent to the following zero-finding formulation; 

min( ,( )) 0.z Az q                                                                                                                      (2)                                              

 

And the zero-finding formulation is equivalent to the following fixed-point formulation; 

max(0, ( )) .z Az q z                                                                                                                  (3)                                       

This fixed point model used in some iterative methods for LCPs called the projected iterative 

methods [10-23]. We describe shortly this class of iterative methods.  

For any iteration we have the following splitting; 
,A M N      

then from Eq. (3):                                                                 

1 1 1max(0, ( )) .k k k kz Mz Nz q z           

We know that, if 1 1( ( )) 0k k k
iz Mz Nz q     then 0

1


k

iz , otherwise 
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Now, for example, if 
         ,M D L   

where ,D L  are diagonal, strictly lower triangular parts of A , in order to solve ( , )LCP A q , we 

have, 
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1

1 1

1 1 1 1 1
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
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Therefore, we get the following formula of the projective iterative method:   
1 1 1max(0, ( ) (( ) )).k k k kz z D A L z Lz q        

 

 

2.2 Modulus fixed-point model  

 

Modulus fixed-point model was introduced by Van Bokhoven [24] as follows: 

If I A  is nonsingular, then the LCP (1) is equivalent to the fixed point problem of 

determining  nx R  satisfying 
1 1( ) ( ) ( ) ( ) .x f x I A I A x I A q                                                                                             (4) 

More precisely (see the proof of Theorem 9.1 in [1]), if x is a solution of (4), then 

, .w x x z x x     

Define a solution of (1). On the other hand, if ,w z  solve (1), then 
1

( )
2

x z w   is a solution of 

(4). This model was extended by Dong and Jiang [26] to the modified modulus algorithms: 
1 1( ) ( ) ( ) ( ) ,

.

x f x I A I A x I A q

R

  



       



                                                                             (5) 

 then, 

( ), .w x x z x x     

 

After that, Bai [27] combined the modulus algorithms with the classical iterative methods as 

follows: 

 By taking ( ),w x x



   

1
( )z x x


   and A M N  , the ( , )LCP A q can be equivalently 

transformed into a system of  the following fixed-point equations: 
1( ) ( ) ( ( ) ).x f x M Nx A x q                                                                                         (6) 

where   is a positive diagonal parameter matrix and   is a positive constant. His work 

followed by a number of researchers in [28-32]. 

 

 

3 A new fixed point model for LCPs 

 

In this section, we will establish a new fixed point model for LCP (1). By definitions of

     0,j jx max x

  and      min 0,j jx x


  the LCP (1) is equivalent to the fixed point 

problem of determining  nz R  satisfying 

( ) ( ) ( ) .Tz f z z q Az z q Az                                                                                                 (7) 

 

 In the following theorems, we prove an equivalent fixed-point equations (7) and the LCP (1). 

Theorem 1. Given the fixed-point model (7), and 0z  . Then z is the solution of LCP (1). 
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Proof. Let 0z  .  If  ( ) 0,iq Az  then from Eq.(7) we get: 

                                                (( ) ) (0) .i i i iz q Az z z      

Therefore, 

0

( ) .i i iz q Az z



                                                                                                                  (8) 

We can see that the Eq. (8) has no solution. This means that when 0iz   and ( ) 0iAz q   the 

LCP (1) is not held. 

If ( ) 0,iq Az  then from Eq. (7) we obtain: 

0

(( ) ) ( ( ) )

( ( )) .

T

i i i i

T

i i

z z q Az z q Az

z z q Az

 



    

  

 

 Since in LCP, ( ) 0Tz Az q  , then: 

  

0

( ( )) .T

i i ii
z z z q Az z



     

If ( ) 0,iq Az  then from Eq. (7) we have: 

(( ) ) ( ( ) ) 0 0T

i i i i iz q Az z q Az z z          

Thus, the proof is completed. 

 

Theorem 2. If  *z  be the solution of LCP (1), then * *( )z f z . 

Proof. Let *z  is the solution of LCP (1), i.e, 
* 0,Az q    * 0,z  and  * *( ) 0.Tz Az q   

So, when *( ) 0,iAz q   then from above LCP we have        
*( ) 0.iz                                                                                                                                  (9) 

Also, by Eq. (7): 

 
* * * * *

* * *

* *

( ( )) ( ) (( ) ) ( ( ) )

( ) 0 ( ( ) )

( ) 0 0 ( ) .

T

i i i i

T
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z z
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
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   
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Then by Eq. (9) we get: 
* *( ( )) ( ) 0.i if z z   

Now, when *( ) 0,iAz q   then: 
* * * * *

0

* * *

* *

( ( )) ( ) (( ) ) ( ( ) )

( ) 0 ( ( ) )

( ) 0 0 ( ) .

T

i i i i

T

i i

i i

f z z q Az z q Az

z z q Az

z z

 





    

   

   

 

Thus, the proof is completed. 

 

By two above theorems, we can conclude that the LCP (1) is equivalent to the fixed point 

model of (7). 
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