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Abstract The most important issue in multi-objective optimization problems is to determine the 

Pareto points along the Pareto frontier. If the optimization problem involves multiple conflicting 

objectives, the results obtained from the Pareto-optimality will have the trade-off solutions that 

shaping the Pareto frontier. Each of these solutions lies at the boundary of the Pareto frontier, 

such that the improvement in one of the objectives results in the worsening of at least one of the 

other objectives. Usually, it is not economical to generate the entire Pareto surface due to the 

high computational cost for function evaluations. Therefore, it is important to get a uniform 

distribution at the Pareto points in the Pareto frontier.  

 In this paper, an efficient method based on angular constraint is presented for finding a suitable 

approximation of the Pareto front of bi-objective optimization problems. In order to get a better 

distribution of points at the Pareto front it is used a strategy following closer the main shape of 

the frontier. To get only the global Pareto points, this strategy sweeps the objective space just 

once, getting automatically rid-off the non-Pareto and local Pareto points, without any further 

filtering. The researcher, after proposing an algorithm for the operation of the method, compares 

its efficiency in one test problem with methods such as weighted sum (WS) and epsilon-

constraint methods. The obtained experimental results show that the proposed method is efficient 

and in most situations more accurate. 

 

Keywords:  Multi-objective Optimization, Pareto Optimality Concept, Scalarization Methods. 

 

 

1 Introduction 

 

Multi-objective optimization is concerned with mathematical optimization problems involving 

more than one objective function to be optimized simultaneously.  

Multi-objective optimization has been applied in many fields of science, where optimal 

                                                      
* Corresponding Author. () 

E-mail: aghanekanafi@gmail.com (A. Ghane Kanafi) 
 

A. Ghane Kanafi 

Assistant Professor, Department of  Mathematics, Lahijan Branch, Islamic Azad University, Lahijan, Iran. 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ao
r.

co
m

 o
n 

20
26

-0
1-

29
 ]

 

                               1 / 9

mailto:aghanekanafi@gmail.com
http://ijaor.com/article-1-561-en.html


2                                                                                                               A. Ghane Kanafi / IJAOR Vol. 7, No. 3, 1-9, Summer 2017 (Serial #25) 

decisions need to be taken to the presence of trade-offs between two or more conflicting 

objectives [1-3]. For a nontrivial multi-objective optimization problem, no single solution exists 

that simultaneously optimizes each objective. In that case, the objective functions are said to be 

conflicting, and there exists a (possibly infinite) number of Pareto optimal solutions. A solution 

is called non-dominated if none of the objective functions can be improved in value without 

degrading some of the other objective values [4]. Without additional subjective preference 

information, all Pareto optimal solutions are considered equally good (as vectors cannot be 

ordered completely). Researchers study multi-objective optimization problems (MOPs) from 

different viewpoints and, thus, there exist different solution philosophies and goals when setting 

and solving them. The goal may be to find a representative set of Pareto optimal solutions, and/or 

quantify the trade-offs in satisfying the different objectives, and/or finding a single solution that 

satisfies the subjective preferences of a human decision maker (DM) [5]. There are generally two 

categories of MOP approaches, gradient-based methods and metaheuristic (nongradient-based) 

methods [6-8]. Gradient-based method usually conducts multiple single-objective optimizations, 

while metaheuristic methods can solve one single but larger MOP problem correspondingly. The 

simplest gradient-based MOP method is the weighted sum (WS) method [9, 10]. Another 

classical standpoint is the  -constraint method [11] which is able to find the non-convex portion 

of the Pareto front, but the solution depends a lot on the   vector. The  -constraint method 

optimizes only one objective and transforms the other objectives into constraints when searching 

for Pareto solutions. Unlike metaheuristic method, the gradient-based methods require the 

gradient information of the functions, thus the functions should be continuous and differentiable. 

For some methods, such as sequential quadratic programming, the functions should be twice 

differentiable. There has been a great deal of effort by researchers in this area in recent years for 

developing methods to generate an approximation of the Pareto front [12-14].  

The present idea proposes a dissimilar strategy in order to improve the efficiency and the 

distribution of the solutions relatively to the methods just described. The proposed approach 

stems basically in substituting the scalar product constraint by a constraint formulated throughout 

the ray with origin at the point (0,0) of the normalized criterion space (see Fig.1).  

This approach, no Pareto-filtering is necessary and only is enough the search from right to 

left of the scalar optimization problems. Besides that, since the rays originated at the point (0,0) 

go along better with the global curvature of the Pareto frontier than the normal directions to the 

ideal line, then we get a better distribution of solutions along that frontier. 

The rest of this paper is organized as follows. Section 2 provides the necessary background 

and terminology used in this paper. Section 3 presents the detailed procedure and discussion of 

the proposed angular constraint method (ACM). Section 4 demonstrates the applicability and 

efficiency of the approaches using one numerical example. Finally, conclusions are presented in 

Section 5. 
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Fig.1 Schematic of proposed method 

 

 

2 Backgrounds and terminology 

 

A typical multi-objective optimization problem (MOP) can be formulated as in the following 

equation: 

 1min ( ) ( ), , ( ) , 2

. .

pf x f x f x p

s t

x X

 



 (1) 

where 
nX R is a nonempty feasible set, and ( )f x

 
represents the vector of objectives and 

, 1, , ( 2)kf k p p   is a scalar decision variable which maps decision variable x  into the 

objective space : n

kf R R . The image of X under f is denoted by : ( ) pY f x R   and referred 

to as the image space. When the objective functions conflict with each other, no single solutions 

can simultaneously minimize all scalar objective functions ( ), 1, ,kf x k p . Therefore, it is 

necessary to introduce a new notion of optimality or Pareto efficiency, which is an important 

criterion for evaluating economic and engineering systems.  

For , py y R , 

 y y  means k ky y  for all 1, ,k p , 

 y y≦ means k ky y for all 1, ,k p , 

 y y  means y y≦ but y y . 

In this paper, we use the above componentwise orders to order the objective space and define the 
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cone  0p p

pR x R x ≧ ≧ . 

Definition 1.1 A feasible point *x X  is called 

 A weakly efficient solution of MOP (1), if there is no other x X such that *( ) ( )f x f x . 

If *x X is weakly efficient then 
*( )f x  is called a weakly non-dominated point. 

 An efficient solution of MOP (1), if there is no other x X such that 
*( ) ( )f x f x . If 

*x X is efficient then 
*( )f x  is called a non-dominated point. 

The set of all weakly efficient and efficient solutions of MOP (1) are denoted by wEX and EX , 

respectively. We call this image, weakly non-dominated solutions and non-dominated solutions 

which are denoted by wNY and NY , respectively. The goal of MOP is to identify wNY or NY which is 

able to represent the Pareto front. 

Definition 1.2 For a p -objective problem, the point  * * *

1( ), , f ( )
t

i

i p if f x x in which 

* argmin ( ), 1, , ,i x X ix f x i p  is called the i -th anchor point. The anchor point in the feasible 

objective space corresponds to the best possible values for respective individual objectives. 

Definition 1.3 The point  * *

1 1( ), , ( )
t

I

p pf f x f x in which 
* arg min ( ), 1, , ,i x X ix f x i p  is 

called the ideal point of MOP (1).  

To this end, we assume that MOP (1) has the individual ideal point. 

Definition 1.4 Nadir point is a point in the criterion space where all objectives are 

simultaneously at their worst values. The nadir point is written as  1 , ,
t

N N N

pf f f where 

N

if is defined as max ( )N

i x X if f x . 

Since the values of the criteria components may differ greatly, they are normalized as 

: , 1, , .
I

k k
k N I

k k

f f
f k p

f f


 


 (2) 

where 
I

kf and 
N

kf are k-th element of ideal and nadir points, respectively. 

This way, the values of the normalized criteria components range from 0 to 1. Therefore, for bi-

objective optimization problems the anchor points of the normalized criterion space are (0,1) and 

(1,0), respectively. Also, the ideal point in this space is the point (0,0). 

 

 

3 Description of ACM method 

 

Determining a uniform distribution of Pareto points is the main idea of this article. In order to 

achieve this goal, we use a different technique. This technique is based on limiting the 
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normalized criterion space. By introducing a special linear limitation, we divide the normalized 

criterion space into two parts (see Fig.1). This causes the criterion space to be divided into two 

sections of the feasible part and infeasible part, respectively. We split the criterion space in two 

regions, for each scalar optimization problem, by using the ray with origin at the space. The 

gradient of this ray is as follows. 

tan , 0
2

m


   
   

 (3) 

If the number of angular segments is n , then the segment size will be equal to 
2n


. Hence the 

criterion space split by the line 
2 1 tan if f    where 

2
i i

n


   for 0,1, ,i n  and the feasible 

region will be the region above this line. Since this line goes better with the global curvature of 

the feasible space boundary, we may obtain a better distribution of solutions. 

Then the set   1 2 2 1 1 2, tan , 0, 0if f f f f f      is defined. It is clear that, we will use from 

this set as a starting point for achieving the Pareto frontier. The geometric of the   is shown in 

Fig.2. 

Fig.2 illustrated a description of the ACM method for a two objective problem. Thus, the 

optimization problem must be solved to generate the Pareto frontier as:  

2min

. .

( ),

f

s t

f f X

x X





 (4) 

 

According to problem (4), a point ix X  is efficient solution if 

2

2 1

1

1 1

1 2

: arg min

. .

tan 0, 1, , 1
2

0, 1, , 1

,

, 0

i

i i

x f

s t

i
f f i n

n

f f i n

x X

f f







    

   





 (5) 

 

Points in non-convexities regions of normalized criterion space are automatically eliminated if 

we use the angular constraint. Also, points in non-convexities are automatically filtered by the 
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constraint 1

1 1 0i if f    for 1, , 1i n  . 

 

( )f X

0 1 2 3

1

2

3

1
f

2
f



( )f X

 

Fig.2 The sets of ( )f x ,   and its intersection with 
60
   for normalized two objective 

In the next section, we demonstrate by using one example that the ACM method is more efficient 

than the weighted sum method (WS) and  -constraint method. It is notable that all single 

objective optimization problems in this paper are solved using the GlobalSolve command in 

MAPLE v.2016 with the active-set option. 

 

 

4 Numerical simulation 

 

In this section, the test problem modified ZDT3 is considered from [15].  
 

4.1 Modified ZDT3 test problem 

The modified ZDT3 test problem can be stated as follows: 

 

 
   

   

1 1 1

1 1 1 1

2 1 1 1

1 1

2

1

2

1

min , , ,

, , , ,
min , , ( , , ) 1 sin(10 ) ,

( , , ) ( , , )

. .

9
( , , ) 1 ,

1

0,1 , 1,1 , 2,3, , .

m

m m

m m

m m

m

m i

i

i

f x x x

f x x f x x
f x x g x x x

g x x g x x

s t

g x x x
m

x x i m







 
   
 
 

 


   



 (6) 

This is an 30m   variable problem having a number of disconnected Pareto optimal fronts. The 
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Pareto optimal region corresponds to *

10 1x   and * 0ix  for 2,3, ,30i  . The difficulty with 

this problem is that the Pareto optimal region is disconnected. The problem is solved by the 

ACM, the WS and  -constraint methods with 50n  . The convergence of the Pareto front and 

distribution of solutions obtained by the ACM, WS and  -constraint methods for finding 51 

Pareto points after 30038040, 5522335 and 3356359 total function evaluations for this problem 

are depicted in Figs.3-5. Details are given in Table 1. 

  
 

Fig.3 Pareto frontier and efficient solutions obtained by ACM with 30038040 total function evaluations 

By a comparison of generational distance (GD), spread (SP) and extension (EX) (see [16]) for 

the three methods, it is concluded that the quality of the approximation of the Pareto optimal set, 

quality of the uniformity of the Pareto optimal set and quality of the well-extended of the optimal 

set obtained by the ACM is better than that for the WS and  -constraint methods. A comparison 

of Figs.3-5 and Table 1 shows that the quality measure of the GD, SP and EX obtained by the 

ACM approach is better than the WS and  -constraint methods. 

  
 

Fig.4 Pareto frontier and efficient solutions obtained by WS method with 5522335 total function evaluations 
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Fig.5 Pareto frontier and efficient solutions obtained by  -constraint method with 3356359 total function 

evaluations 

 

Table 1 Run time (s), total number of function evaluations (TFE), measure for the approximation (GD), measure of 

uniformity (SP) and measure of well-extended (EX) between solutions obtained by ACM, WS and  -constraint 

methods 

Method 
Modified ZDT3 test problem 

Run time (s)               TFE                      GD
*
                SP

*
                    EX

* 

ACM 

WS 

 -constraint 

7483094 

698390 

429687 

30038040 

5522335 

3356359 

0.00009536 

0.001488 

0.003446 

6.989 

218.0 

15.16 

0.1714 

0.2180 

0.2334 

* The numbers are rounded up to four significant digits. 

 

 

5 Conclusions 

 

This article proposes a new strategy to calculate the global Pareto solutions for a bi-objective 

optimization problem. The method can calculate the scalar minimization sub-problems in only 

one-direction series and filtering automatically all the local Pareto and non-Pareto solutions, this 

way increasing the efficiency relatively to other strategies as, namely, the weighted sum and  -

constraint methods. Also, the method presented may obtain a better distribution of the Pareto 

points, since it is based on the division of the criterion space by rays originated at the right upper 

corner and directed nearly perpendicular to the Pareto frontier. The ACM approach generates a 

good distribution of the entire Pareto frontier for both the convex and non-convex Pareto front. 

The proposed method was applied to a test problem and performed very well for obtaining the 

Pareto front. In all cases, the solutions obtained by the ACM approach were better than the 

solutions obtained by the WS and  -constraint methods. 
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