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Abstract Modeling and solving real world problems is one of the most important issues in 

optimization problems. In this paper, we present an approach to solve Fuzzy Interval Flexible Linear 

Programming (FIFLP) problems that simultaneously have the interval ambiguity in the matrix of 

coefficients  . In the first step, using the interval problem solving techniques; we transform the fuzzy 

interval flexible problem into two optimistic and pessimistic sub-problems. Then, in the second step, 

using a multi-parametric approach, we solve two fuzzy flexible sub- problems and finally the results 

are investigated with numerical example. 
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1 Introduction 

 

Fuzzy Linear Programming (FLP) problems allow working with imprecise data and 

constraints, leading to more realistic models. They have often been used for solving a wide 

variety of problems in sciences and engineering. Fuzzy mathematical programming has been 

researched by a number of authors. One of the earliest works on fuzzy mathematics 

programming problems was presented by Tanaka et al. [16] based on the fuzzy decision 

framework of Bellman and Zadeh [5]. In the literature, FLP has been classified into different 

categories, depending on how imprecise parameters are modeled by subjective preference-

based membership functions or possibility distributions. Based on possible combinations of 

the fuzziness of the constraints matrix, resources vector, the cost coefficients and the objective 

function, Lai and Hwang [10] classified FLP problems into the following five general groups: 

          • FLP of type-I: The FLP problems with a fuzzy resources vector or fuzzy 

inequalityconstraints belong to this group. 

          • FLP of type-II: The FLP problems with a fuzzy resources vector (fuzzy inequality 

constraints) and a fuzzy objective function belong to this group. 

          • FLP of type-III: The FLP problems with fuzzy cost coefficients belong to this group.  

          • FLP of type-IV: The FLP problems with fuzzy cost coefficients, a fuzzy constraints 

matrix and a fuzzy resources vector (fuzzy inequality constraints) belong to this group. 
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          • FLP of type-V: The FLP problems with a fuzzy objective function, a fuzzy 

constraints matrix and a fuzzy resources vector (fuzzy inequality constraints) belong to this 

group. 
Tanaka and Asai [16] proposed a possibilistic LP formulation where the coefficients of 

the decision variables were crisp while the decision variables were fuzzy numbers. Verdegay 

[17] proved that the optimal solution of an FLP of type-I can be found by the use of solving 

an equivalent crisp parametric LP problem assuming that the objective function is crisp. 

Werners [18, 19] suggested that the objective function should be fuzzy because of fuzzy 

inequality constraints and computed the lower and upper bounds of the optimal values by 

solving two crisp LP problems. Then, using the max-min operator of Bellman and Zadeh [5], 

he proposed a non-symmetric model for finding the solution of the FLP problem of type-I that 

satisfies the constraints and objective with the maximum degree. But the solution obtained by 

the max-min operator may not be efficient since the situation in the model proposed by 

Werners has multiple optimal solutions. To overcome this shortcoming, Guu and Wu [8] 

proposed a two-phase approach for solving the FLP problem of type-I that not only pursues 

the highest membership degree in the objective, but also pursues a better utilization of each 

constrained resource. After that, Nasseri and et al. in [11] introduced an equivalent fuzzy 

linear model for the flexible linear programming problems and proposed a fuzzy primal 

simplex algorithm to solve these problems. Recently, Attari and Nasseri [4] introduced a 

concept of feasibility and efficiency of solution for the fuzzy mathematical programming 

problems. The suggested algorithm needs to solve two classical associated linear 

programming problems to achieve an optimal flexible solution. 

In the other hand, Interval linear programming problem which is a branch of linear 

programming was introduced originally by Ben and Rober's [6] which data are in the form of 

interval numbers, then the problem is an interval linear programming problem. They 

presented the first linear programming model for interval constraints for the first time. 

Subsequently, Huang and Moore introduced a new linear programming model in which all the 

parameters and variables were interval [9]. Generally, the solving method in these cases is the 

application of concepts that can turn the interval problem into problems with ordinary 

coefficients. These solving model transforms an interval linear programming problem into 

two sub-problems, one of which is the largest region with the best optimal value, and the 

other one obtains the smallest region with the worst optimal amount[3,7,15]. Many author 

research in interval problem with several objective function [13]. Recently, Mishmast Nehi & 

Allahdadi [1, 2] modified and improved the Tong method, which was unable to get optimal 

response on some issue. In this paper, we are going to suggest a new generalized model 

entitled "Fuzzy Flexible Interval Linear Programming (FFILP)" problem and using a multi-

parametric approach propose a new two-phase method to solve the original FFILP problem 

suitably. 

The rest of the paper is structured as follows: In section 2 we introduced the basic 

notions of interval linear programming and a Fuzzy Flexible Interval Linear programming 

(FFILP) problem. An application of the methods is described in fuzzy linear programming 

problems which contains interval numbers in the coefficients matrix in section 3. In Section 

4, we present a numerical example for the proposed method.  Section 5concluded the paper. 
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2. Preliminaries 

  

In this section, some basic definitions, arithmetic operations and theorem that used in 

following are presented [1, 5]. 

Definition 1. Given    x and x  such that  x x , we define a closed interval   ,x x x  as 

the set  :  x x x x   . 

The values    x and x  are called the lower bound and upper bound of the interval 𝑥, 

respectively. 

Definition 2. An interval   ,x x  with x x  is said to be degenerate. 

Since a degenerate interval   ,x x only contains a single number, it is often identified with 

the number 𝑥 itself, therefore it holds that   ,x x x . 

Definition 3. Given two matrices     m nAand A   such that A A , we define a real interval 

matrix  ,A A A     as the set  :  m nA A A A   . The matrices    Aand A  are called the 

lower bound and the upper bound of the interval matrix 𝐴, respectively. 

     The radius and center of A  are  
1

2
A A A    and  

1

2
CA A A  , respectively. Thus, 

  , ,C CA A A A A A A
      .  

     An interval vector 𝐼 is introduced as the set    ,  I I I I  , where     nI and I   are crisp 

vector[11]. 

Definition 4. A general form of the Interval Linear Programming (ILP) model is defined as 

follows: 

1

1

    

. .              ,     1,2,    ,   ,   

0,        1,2,   ,   .        

n

j j

j

n

ij j i

j

j

max Z c x

s t a x b i m

x j n

  



  







  

  



                                                                                (1) 

where ,   ,j j jc c c      ,  ij ij ija a a      and ,    i i ib b b     are interval numbers and ,  j j jx x x     

is an n-dimensional  interval decision vector. 

Theorem 1. In the ILP model (1), the largest and smallest feasible regions are 
1

   ,
n

ij j i

j

a x b 



  

  1,2,    ,  i m  , 0,   1,2,   ,  jx j n    and 
1

  ,
n

ij j i

j

a x b 



  i , 0,   1,2,   ,  jx j n   , 

respectively [15]. 

There are several methods for solving interval  linear programming  problems, these 

methods for solving linear interval programming problems in such a way that in general the 

linear programming problem with interval parameters turns into two optimistic and 

pessimistic linear programming models where their solutions are the optimal interval of the 

main problem. This method examines the answers to the linear programming problems 

derived from the standard form [2, 15]. 
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We transform the ILP problem (1) into pessimistic and optimistic sub-problems, which are 

summarized as follow [15]: 

   The pessimistic sub-problem: 

1

1

           ,

. .          ,      1,2,   ,   ,

  0,        1,2,   ,   .        

n

j i

j

n

ij i i

j

j

max Z c x

s t a x b i m

x j n

 



 





  

  




                                                                                     

 (2)             

    The optimistic sub-problem:           

1

1

         ,

. .                 ,      1,2,   ,   ,  

0,        1,2,   ,   .   

n

j i

j

n

ij i i

j

j

max Z c x

s t a x b i m

x j n

 



 





  

  




                                                                                   

 (3)                                                                                          

The optimal solutions to sub-problems (2), (3) is in box form as follows: 

 1 2, ,..., nx x x x    , where for all 1,2,   ,  j n  , ,  j j jx x x      . This box is the solution area 

of the tong method. 

Theorem  2. In solving process of ILP model, if    is the optimal objective value of model 

(1), and     and     are the optimal objective values of the model (2) and model (3), 

respectively, then  
* * *,Z Z Z    . 

Definition 5: We consider a case where the decision maker assumes that there is a certain 

tolerance in the fulfillment of constraints. In other word, a certain degree of violation is 

allowed and this is created by the decision makers. The general form of the FFLP problems 

with fuzzy resources can be formulated as follows [9]: 

 

 

1

1

     , ,

. .      g   ,   1,2,  ,  , 

0,    1,2,..., .      

n

j j

j

n

i ij j i

j

j

max z f x c c x

s t x a x b i m

x j n





 

  

 




                                                                                                  

(4) 

In model (4),  " " is called " fuzzy less than or equal to" and it is assumed that the 

tolerance ip  for each constraint is given. This means that the decision maker can accept a 

violation of each constraint up to degree ip . In this case, constraints  gi ix b , are 

equivalent to  gi i ix b p  , (𝑖=1,2,…,m), where  0,1  . 

The problem (4) can be equivalently considered as the following fuzzy inequality 

constraints [6]: 

 
1

     , , 
n

j j

j

max z f x c c x


   
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  
1

. .      g   ,   1,2,  ,  , 
n

i ij j i

j

s t x a x b i m


                                                                                 (5) 

   0,    1,2,..., .      jx j n   

Definition 6. The membership function of the 𝑖- th constraints denoted as follows: 

  

 

    

 

  g

g 1 g

1,

/

g

,

,

0

g

i i

i i i i i i i

i i

x b

x x b p b x b p

x b p



 


     


 

i i

i

                                                    (6) 

Now, by substituting membership function (6) into problem (5), the following crisp 

parametric LP problem is achieved: 

 
1

      , ,
n

j j

j

max z f x c c x


   

     . .     g 1 ,    1,2,  ,  ,       i i i ii
s t x Ax b p i m                                                           (7) 

       0,    0,1 ,     1,2,  ,  .    j ix j n     

Definition 7: Let    1,..., 0,1
m

m     be a vector, and 

     0,  g , 0 ,   1,2,  ,  . n

i i i iX x R x x a i m        . 

Then, a vector x X  is called an  - feasible solution of model (5). 

Following proposition enables us to define feasible set of model (5) as an intersection of all 

 -cuts corresponding to fuzzy constraints. 

Proposition 1: Let    1,..., 0,1
m

m    , then 
1

i

m
i

i

X X 



 , where 

     0,  g , 0   , 
i

i n

i i i iX x R x x a      for  1,...,i I m   ( Namely, iX  is the  -

cuts of the  i –th constraint). 
 Proof: The proof is straightforward.  

Proposition 2: Let  1,..., m      and  1,..., m     , where '

i i    for all i . Then  -

feasibility of x  implies the  -feasibility of it. 

Proof: The proof is straightforward.  

Definition 8: Let " " be a fuzzy extension of relation " " and a solution 

 1,...,
T n

mX x x   be an     feasible to problem (5), where    1,..., 0,1
m

m     and 

let  ,f x c  be an objective function in the form of maximization. Then,  1,..., nX x x , 

where n

jx R  is an    efficient solution to problem(5), if there is no x X
  so that 

   , ,f x c f x c . 

Clearly, any    efficient solution to the FFLP is an    feasible solution to the FFLP 

with some additional properties. 

 

3. Fuzzy Flexible Interval Linear Programming 

 

Let us consider a general model of Fuzzy Flexible Interval Linear Programming (FFILP) 

model as follows: 
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 
1

     , ‚ 
n

j j

j

max z f x c c x


   

 
1

. .        ,   1,2,  ,  , 
n

ij j i

j

s t a x b i m



                                                                                       (8) 

   0,    1,2,..., .      jx j n   

where  1 2, ,...,
T

nx x x x  is a real vector of decision variables, and interval where 
jc  is a 

fuzzy number that is the objective coefficients. 
ija  shows an interval coefficient matrix as 

,ij ijA a a     , where A is a m n - dimensional matrix of interval technical coefficients. 

And, objective functions and constraints where  1,...,i m  possess continuous property up to 

the second derivatives.  Also, " " denote a fuzzy extension of " " on  which is used to 

compare the left and right side of fuzzy constraints [12,14]. Unfortunately, the problem (12) is 

not well-defined because of: in first step, we can't use linear programming techniques to 

solving linear problems with interval coefficients matrix and obtain a feasible area of 

problem. In second step, we can't achieve a crisp feasible set of the constraints  g , 0i ix a , 

 1,..., .i m   

To solving the above mentioned problem with two various  types of uncertainty associated 

with the coefficients matrix and flexible constraints, we present a two- step approach. 

In first step, by use of interval techniques and methods that proved to solving a linear 

programming problem with interval coefficients. This methods in general the linear 

programming problem with interval parameters turns into two optimistic and pessimistic 

linear programming models where their solutions are the optimal interval of the main problem 

[2, 15]. 

Now, we transformed the ILP problem (8) into pessimistic and optimistic sub-problems, 

which are summarized as follow [3, 15]: 

   The pessimistic sub-problem: 

 
1

         , ,
n

j j

j

max Z f x c c x



   

1

. .                   ,      1,2,   ,   ,
n

ij i i

j

s t a x b i m



                                                                                    (9) 

              0,        1,2,   ,   .        jx j n      

    The optimistic sub-problem:                                            

 
1

      , ‚ 
n

j j

j

max Z f x c c x



   

1

. .                 ,      1,2,   ,   ,   
n

ij i i

j

s t a x b i m



                                                                                   (10) 

            0,        1,2,   ,   .  jx j n    

The optimal solutions to sub-problems (9) and (10) is in box form as follows: 

 1 2, ,..., nx x x x    , where for all 1,2,   ,  j n  , ,  j j jx x x      . This box is the solution area 

of the tong method. 
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In final step, in order to find maximum efficient solution, i.e. an   - efficient solution with 

  ,   1,2,   ,   ,i m    we perform the following two phase approach. To express this two-

phase approach to the above problem, let us consider the problem (9) and implement a two-

phase approach for this sub-problem, and then, with the resumption of the approach discussed 

below, we solve the second problem. In the two phase approach, Eq (6) is solved in Phase I, 

while in Phase II, a solution is obtained which has higher satisfaction degrees than the 

previous solution. Thus by using this two Phase approach, we achieve a better utilization of 

available resources. Further the solution resulting by this approach is always an  - efficient 

solution. Let us consider the Definition and substituting in the problem (9) achieve the 

parametric linear programming that solved by linear techniques.  

 
1

        , ‚ 
n

j j

j

max Z f x c c x



   

 
1

. .                  1  ,      1,2,   ,   ,
n

ij j i i i

j

s t a x b p i m



                                                               (11)  

              0,        1,2,   ,   .        jx j n      

Let us call the problem (11) as Phase I problem. 

Theorem 3.2: Let    1,..., 0,1
m

m     and also  * * *

1  ,...,
T

mX x x , where * 0jx  , 

 1,2, , j n  be an    feasible solution to problem (9). Then, * nx   is an    efficient 

optimal solution to problem (9), where assumed  that the objective function is in the type of 

maximization, if and only if the decision making *x  is an optimal solution of problem (11), 

where ip  is the predefined maximum tolerance. 

Proof: Let    1,..., 0,1
m

m     and  * * *

1 ,...,
T

mX x x , so that * 0jx  ,  1,2, , j n , be 

an    efficient solution to problem (11). With regard to Definition 7 and equation (6) 

concluded that *x  is feasible to problem (9). Because of    g , 0  i i i ix a   or 

equivalently  *

1

1
n

ij j i i i

j

a x b p



    for  1,...,     1,2,   ,   . i m and j n    

Also, by Definition 8, there is no x X
  such that    , ,f x c f x c , it means that *x  is 

optimal to problem(13). In other hand, if *x  is an optimal solution of problem (9), obviously, 
*x  is an    feasible solution to problem (9) and hence, the optimality of *x  implies that the 

   efficiency of *x  . 

Also, in theorem  3.2,  we discussed the method for obtaining the  -efficiency solution  of 

fuzzy mathematical programming problem. If the  result of problem (11) has only one optimal 

answer, then this answer is an  -efficient solution given for the fuzzy problem. When 

problem (11) has several optimal answers, use two phase  approach  in order to find the 

maximum effective response  -efficient solution with    and i = 1,2, ..., m.  In the two-

stage approach, problem (11) is solved in the first phase. Then, in Phase II, an answer is 

obtained that has a higher degree of validity than the previous one. So, using this two-step 

approach, we will achieve a better productivity of existing resources and make the decision-

maker more convincing and more satisfying. 
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Let  0 0 0

1 m,...,α   and   * *, ,  x f x c    be the optimal solution of pessimistic sub- 

problem of Phase I with 0  degree of efficiency. Set   * 0g , 0   ,   1i i i i ix a i    * ,...,𝑚. 

In Phase II, we solve the following problem, 

1

      
m

i

i

max 


  

      * *. .  , , , ,s t x f x c x f x c                                                                                              (12) 

    
1

  1  ,      1,2,   ,   ,   
n

ij i i i i

j

a x b p i m



      

    *0,     1,  1,2,   ,   . j i ix j n       

Theorem 3.3: The optimal solution **x  to problem (12) is a maximum    efficient solution 

to problem (9). 

Proof: The proof is straightforward.  

 

 

3.1 The main steps of algorithm 

 

Here, we are going to present the main steps of our approach for solving Fuzzy Flexible 

Interval Linear Programming (FFILP) problems which is defined in the problem (8). 

Assumption 1: In problem (8), only the coefficient matrix is interval and another parameters 

in constraints is crisp. 

Assumption 2. An approach to transform n interval linear programming problem in two 

linear programming sub- problem is given (see in [1, 2, 3, 7, 15]) 

Step1: By use of interval problems method, obtain two sub-problem (9) and (10) that 

coefficient matrix is crisp. 

Step 2: given pessimistic sub- problem (9) and based on relation (4-7), the problem is 

rewritten as multi-parametric problem (11). 

Step 3: Solve the above multi-parametric problem as Phase I and first obtain the optimal 

value of *x and * , and then the optimal value of the objective function *Z . 

Step 4: Based on the optimal solution of problem in step 3 reformat the multi-parametric 

problem as the  as (12) 

Step 5: Consider second sub-problem (10) and go to step 2. 

 

 

4. Numerical Example 

 

A manufacturer of metal office equipment makes desk, chairs, cabinets and bookcases. The 

work is carried out in three departments: (1) metal stamping, (2) assembly, (3) finishing. The 

pertinent data are presented in the table below. Note that, the hours that per week available are 

increased by 300 hours for the stamping, 500 hours for the assembly and 170 hours for 

finishing. 
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Table1. Pertinent data 

 

Department Desk Chair Cabinet Bookcase Hours per week 

available 

Stamping 3-15 1.5-8 2-12 2-12 800 

Assembly 10-30 6-18 8-24 7-21 1200 

Finishing 10-35 8-28 8-25 7-21 800 

Selling price 175 95 145 130  

 

what should be the rate of production of each of the items be in order to maximize weekly 

profits if no restrictions are placed on the number of any item to be made. 

The mathematical formulation of the above problem can be summarized as follows: 

1 2 3 4max     175 95 145 130z x x x x      

       1 2 3 4      . .     3,15    1.5,8       2,12   2,12   800, s t x x x x        

                 1 2 3 410,30   6,18   8,24   7,21   1  200x x x x   ,   

                 1 2 3 410,35    8,28   8,25   7,21   800,x x x x                                                    (13) 

              0,                     1,2,3,4.jx j   

Now, using the interval method that mentioned in this paper and transforming the above 

interval problem (13) into two crisp sub-problems. Firs, consider one of two sub-problem and 

with the member ship function (6), where 1 3P  00, 2 500P   and 3 1P  70 are predefined 

maximum tolerance from ib , 𝑖=1,2,3. By substitute the above membership function (6) into 

each sub-problems obtains a multi-parametric problem as follow: 

1 2 3 4max     175 95 145 130z x x x x       

 1 2 3 4 1. .     3  1.5   2  2 800 300 1 , s t x x x x                        

       1 2 3 4 210  6  8 7 1  200 500 1x x x x       ,   

       1 2 3 4 310  8  8 7 800 170 1 ,x x x x                                                                        (14) 

              0,                     1,2,3,4.jx j   

Let  * 0,0,0,126.4286x   be (0.8, 0.5, 0.5)-efficient solution with * 16435.71 TC x   as an 

optimal value of problem. In Phase II of parametric approach we need to solve the following 

linear problem: 
3

1

       i

i

max 


  

s.t.     1 2 3 4175 95 145 130 16435.71x x x x    , 

            1 2 3 4 13  1.5   2  2 800 300 1x x x x       , 

           1 2 3 4 210  6  8 7 1  200 500 1 ,x x x x                                                                  (15) 

           1 2 3 4 310  8  8 7 800 170 1 ,x x x x        

            1 2 30.8 1, 0.5 1, 0.5 1,         

               0,            1,2,3jx j  . 

An optimal solution to the above problem is  ** 0,0,0,126.4285x  , also 

* ** 16435.71 T TC x C x  we have 1 2 3  1, 0.5     . Using the two phase approach, we can 
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get an optimal solution *x  which not only achieves the optimal objective value but also give a 

higher value in 1 2,   . 

Now, we use all this steps to solve the second sub-problem. Finally, by solving the second 

sub-problem obtain that, if  * 0,0,0,42.14286x   be (0.8, 0.5, 0.5)-efficient solution with 

* ** 5478.571T TC x C x  , and  ** 0,0,0,42.14286x   and 1 2 3  1, 0.5     . Finally, with 

regards to Theorem 2 optimal objective value of problem (13) is  * 5478.571,16435.71Z  . 

 

 

5. Conclusion 

 

In this paper, we investigated a linear programming problem with interval data and flexible 

constraints. We saw that the mentioned model is more adaptive with the practical situations. In 

particular, a new concept of  -feasibility and   -efficiency of solution in fuzzy flexible linear 

programming problems is introduce to propose a parametric approach for solving the original problem 

by solving two associated classical linear programming problems. This approach will be useful in 

obtaining flexible responses with a degree of satisfaction determined by the decision maker for fuzzy 

mathematical programming. Interval techniques help us to convert linear problem with interval 

uncertainty to crisp problems and by using of linear techniques solve them. 
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