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Abstract Systems of linear equations are ubiquitous in science and engineering, and iterative methods
are indispensable for the numerical treatment of such systems. When we apprehend what properties of
the coefficient matrix account for the rate of convergence, we may multiply the original system by
some nonsingular matrix, called a preconditioner, so that the new coefficient matrix possesses better
properties. Recently, some scholars presented several preconditioners and based on numerical tests
proposed some conjectures for preconditioned iterative methods. In this paper, we prove one
conjecture on the preconditioned Gauss—Seidel iterative method for solving linear systems whose
coefficient matrix is an M-matrix.
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1 Introduction
Let us consider the following linear systems:
AX =D, @

where AeR™ and b,xeR". For the simplicity, in this paper we shall assume that
A=1-L-U, where I is the identity matrix, L and U are strictly lower and upper triangular
parts of A respectively. This problem is ubiquitous in mathematical modeling and scientific
computing, and occurs in a wide variety of areas including numerical differential equation,
economics models, design and computer analysis of circuits, power system networks,
chemical engineering processes, physical and biological sciences. lIterative methods are
indispensable for the numerical treatment of such systems, and numerous iterative methods
are available to find a solution for linear systems; see [1-10] and the references therein.

Large families of these iteration methods for solving Eq. (1) take the splitting form. For
any splitting A=M-N, where M is nonsingular, the iterative method for solving linear systems
of Eq. (1) is:
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X(i+1) _ M—lNX(i) +M_lb, i :O,l,... (2)

This iterative process converges to the unique solution x = A™b for initial vector value
x° e R" if and only if p(M ™N) <1, where T =M N is called the iteration matrix and p(T)

denotes the spectral radius of T . The effective method to decrease the spectral radius is to
preconditioning technique. A preconditioner is defined as an auxiliary approximate solver
which will be combined with an iterative method. Therefore, a basic idea of preconditioned
iterative methods is to transform Eq.(1) into the preconditioned form PAx=Pb.

In literature, various authors have suggested different models of (1+S)-type preconditioner
for the above mentioned problem; see [1, 9-10, 11-17]. For example, Milaszewicz [1],
presented the preconditioner (1+S), where the elements of the first column below the diagonal
of A eliminate.

Gunawardena, Jain and Snyder in [11] proposed a modification of Jacobi and Gauss-Seidel
methods and reported that the convergence rate of the Gauss—Seidel method using the following
preconditioning matrix is superior to that of the standard Gauss—Seidel method;

P=1+S§S,
and

0, for otherwise.
Inspiring from the same idea, Kohno et al. [12] propose an extended modification of

-8 | for j=i+1i=12,..,n-1
S :(Si j)_

Jacobi and Gauss-Seidel methods. Usui et al. [13] proposed to adopt:
P=1+U,
as the preconditioned matrix, where U is strictly upper triangular of matrix A. They
obtained excellent convergence rate compared with that by other iterative methods.

Evans et al. [14] proposed the preconditioner P =1 +R,, where

-8, for i=n,j=1
R=q "
0, for otherwise.

In 2001, Niki et al. [15] proposed the preconditioner P=1+S +R,, where

-a;, for i=nj=12..,n-1
0, for otherwise.

Saberi Najafi and Edalatpanah in [16] established;

P=1+S
where for i=1:n-1land j>i:

min?

0, if jeQ.
S. =

™ |-a,, otherwise.

and
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Q=] j<i&‘ai'j‘:mkin‘aiyk‘ for i<n-1.

Some scholars also used these preconditioner models for algebraic systems and
complementarity problems [18-21]. Furthermore, some other researchers have considered
different models in the literature [22-29].

Yuan and Zontini [17], inspiring from the above models, present a new preconditioner for
the Gauss—Seidel method on this class. These authors also established several comparison
theorems for the proposed method with several preconditioners. However, based on numerical
tests, they proposed some conjectures for preconditioned Gauss-Seidel iterative method. In
this paper, based on nonnegative matrix analysis, we prove the conjecture.

2 Preliminaries

In this section, we give some basic notations and preliminary results which are essential tools
for describing our main results. Our notations and definitions in this paper are standard, and
for details, we refer to [2-3, 9].

Definition 2.1. Areal nxn matrix A=(a;)is called

() a Z-matrix if and only if forany i= j,a; <0 ;

(b) an L-matrix , if it is a Z-matrix and a;; >0;

(c) an M-matrix if and only if it is a Z-matrix , nonsingularand A™ >0 .

Definition 2.2. Let A be a real matrix. The splitting A=M-N is called

(a) convergent if p (M 'N)<1,

(b) regularif M >0 and N >0,

(c) weak regular if M™ >0 and M'N >0.

Clearly, a regular splitting is weak regular.

Lemma 2.1. Let 4 =M — N s regular or weak regular splitting of A. Then p(M "N ) <1 if
and only if A™ > 0.

Lemma 2.2. Let A, B are Z-matrix and A is an M-matrix , if A<B then B is also an M-matrix .

Lemma 2.3. Let A be a nonnegative matrix. Then
(i) If ax< Ax for some nonnegative vector X, then a < p(A).

(i) If ax < pxfor some positive vector X, then p(A) < . Moreover, if A is irreducible
and 0= ax< AX< BX,ax# Ax, Ax = Bx for some nonnegative vector X, then
a< p(A)< Band x is a positive vector.

3. Main Results

Based on [17], we assume that is A is an M-matrix. Furthermore, we consider the following
preconditioners:
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P, =1+S+R,
Pr=1+S+R,
R, =1+U,

P =1+R+U.

Their corresponding preconditioned matrices are respectively:

A =P A,

Ay =PRA

AJ:PUA'

Ay, =P A
Hence, the splittings of the Gauss—Seidel method are respectively:
A=M-N: M=I1-L;N=U,
A, =My -Ng: Mg =I-L+R-SL-RU;N; =U-S+SU,
Ar=Mg-Ng: My=I1-L+R-RL-SL-RU;Ng=U-S+SU,
A, =M, -N,: M, =1-L-E;N, =U?+F,,
Ay =Mq, —Ng, @ Mg, =1 -L+R—RL—RU —E,;N., =U?+F,.

where E,, F, denote the lower triangular and upper triangular parts of UL=E, + F,,
respectively.

Theorem 3.1. (Conjecture 6.1)Let A be an M-matrix. Then we have;
p(M;éNSR) S,O(I\/lsjlll\lsl)-

Proof. We first consider the case where A is an irreducible M-matrix. Hence,
A, = Mg, — Ng; is regular spitting, then by [3; Theorem 2.7], there exists a positive vector x
such that (Mg "Nz )X = o(M g "N ) X.
Furthermore, since Ny, >0 we have Ngx>0. And so,
1

M X=—rrr———
* p(MSRilNSR)

Ngx = 0.

Therefore,

1_/0(MSR_1NSR)
P(Mg "Ngg)

Furthermore, we know that Azx= (1 +S+R)Ax>0 and (I +S+R) >0, therefore Ax>0.

Now we have;,

AgX =Mg(l _MSR_lNSR)X: NggX = 0.
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Agx=(1+S+R)Ax
=(1+S+R)Ax+ (R, —R)AXx
=(1+S+R)AX+(R-R)AXx=(1 +S+R)AXx>0

= AgX 2 Ag X

On the other hand, by definition, S; U and (S, S, )U are nonnegative, so;

Maq =1 _(S_aqU)D _([S’_wq _S_aq ]U)D
—r{L+(S,U) +([S,, S, V) +S,.}
<I-L+R-SL-RU =M,

53

where (x),and (x), denote the diagonal and strictly lower triangular parts of «, respectively.
In view of that both M, and M, are M-matrices, (M, )™ > (M, )™

Then we have;

=(1-M_ A, )x=M_ A, x.

Therefore by Lemma 2.3 the proof is completed. m

4 .Conclusion

From the results, it may be concluded that preconditioners are effective to accelerate
convergence of the iterative methods. Furthermore, we prove one conjecture on the
preconditioned Gauss—Seidel iterative method for solving linear systems whose coefficient matrix is

an M-matrix.
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