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Abstract In the present world, calculating the efficiency (or the performance) of systems with an 

internal structure, such as two-stage systems, is principally imperative during multi-time periods. In 

the present approach, the traditional two-stage Data Envelopment Analysis (DEA) model is developed 

to a multi-period two-stage DEA model, which evaluates the overall and periods of efficiencies 

synchronously. This approach which is used, is not only alone incapable of having functional 

capacities under the assumption of variable returns to scale (VRS), but is also inattentive to the 

importance or magnitude of data in different periods. In this study, in order to surmount these 

shortcomings, we expand the existing approaches and introduce a generalized model to measure the 

overall efficiency of a multi-period two-stage system under the VRS assumption, wherein, the 

importance of data in time- periods is considered in a diverse manner. According to this generalized 

model, theorems are also being presented to determine the type of returns to scale (RTS) of both 

stages, as well as the system of the entire time periods and also each period. Finally, the real data of 

Taiwanese non-life insurance companies, which has been extracted from the extant literature, is used 

to illustrate the proposed approach. 

 

Keyword: Data Envelopment Analysis (DEA), Two Stage System, Multi-Period, Multi-Stage System, 

Returns to Scale. 

 

 

1 Introduction 

 

Data Envelopment Analysis (DEA) is a mathematical programming for evaluating the relative 

efficiency of decision making units (DMUs), which has been introduced by Charnes, Cooper, 

and Rhodes [1]. Recently, in real life problems, there are some systems that have a two-stage 

structure. The traditional DEA measures the efficiency of this system regardless of its internal 

structure. Thereby, this is one of the disadvantages of the traditional DEA model. In order to 

compute the performance of such systems, some authors applied two-stage DEA methods. 

DMUs with a two- stage structure are used in many of the recent studies in the field of DEA. 

Seiford and Zhu [2] introduced a model for evaluating the two-stage system that evaluates the 
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overall efficiency of the system and performance of stages independently. In that, in this 

model, in general, the efficiency of the system may be proficient, whilst every stage is not. 

So, Kao and Hwang [3], proposed a model by considering the correlations of stages. This 

model measures the efficiencies of a two-stage system and the overall efficiency, which is the 

product of the efficiencies of stages. Thus, the system is efficient if and only if both the stages 

are efficient.  In the inefficient stage, in order to achieve an efficient system, it is necessary to 

reduce the inputs or increase the outputs, or even modify the intermediate products. The Kao 

and Hwang model cannot calculate the efficiency of the systems under the VRS assumption. 

Hence, Chen et al. [4] presented the models to measure the constant returns to scale (CRS) 

and VRS efficiencies of two-stage systems. In their models, the overall efficiency of the 

system is expressed as a weighted average of the efficiencies of stages. Next, Wang and Chin 

[5] proposed a model to overcome the weakness of the Kao and Hwang model and calculate 

the VRS efficiency of two-stage systems. They also demonstrated that the efficiency obtained 

from the Chen et al. model is greater than that of the efficiency attained from the Kao and 

Hwang model. 

Wu et al. [6] used an additive DEA approach to evaluate the efficiency of the new two-

stage network structures with undesirable intermediate outputs. Fei et al. [7] also proposed 

some DEA models to measure the efficiencies of the two-stage process and its sub-processes, 

in the presence of undesirable outputs. Chu et al. [8] proposed a two-stage DEA model to 

obtain the eco-efficiency of the entire two-stage system in terms of the eco-efficiency analysis 

of the Chinese provincial-level regions.  Despotis et al. [9] reviewed the additive and 

multiplicative efficiency decomposition methods and introduced a method to measure the 

unique and unbiased efficiency scores of two-stage systems. Based on the mentioned 

approaches, many models are introduced to measure the efficiency of two-stage systems with 

comprehensive structures. A model for measuring the efficiency of two-stage systems in 

presence of shared resources and undesirable outputs using the heuristic algorithm was also 

presented by Wu et al. [10]. Then, Guo and Zhu [11] converted the non-cooperative models of 

Wu et al. [10] into a linear program by utilizing the Charnes-Cooper transformation or 

conversion. Izadikhah et al. [12] also rendered a model for measuring the efficiency of two-

stage systems with liberally distributed initial inputs and shared intermediate outputs. Also, 

Xueqin et al. [13] measured the efficiency of commercial banks based on two-stage DEA 

model in presence of undesirable output. Akbarian [14] proposed the new network DEA 

based on DEA-ratio. The novel classify of flexible and integer data in two-stage network 

DEA proposed by Hosseini Monfared et al. [15] (Refer to ([16-22])). All these models are 

focused on measuring the efficiency in a definite time period. 

In varied applications, we need to compute the efficiency of systems in multiple time 

periods. Hence, many studies have been done to evaluate the efficiency of DMUs in different 

time periods. For example, Portela et al. [23] calculated the efficiency of DMUs in several 

time periods by employing the data average. Then, Kao and Liu [24] introduced the aggregate 

model, connected network model, and relational network model to calculate the multi-period 

efficiency of DMUs. The aggregate model is used in the aggregation of data; and is solved 

independently, to obtain the efficiency in a specific period. The connected network model 

calculates the efficiency of each period separately. Then, the efficiency of the period with the 

highest performance is recognized as the efficiency of the system. But in the relational 

network model, the constraints of each period are used and thus, after solving this model, the 

overall efficiency of the system and efficiency of each period are calculated. However, in this 

model, the total efficiency of the system is defined as the weighted average of periods. Razavi 

Hajiagha et al. [25] utilized the mean-variance criteria and presented a method for measuring 
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the efficiency of multi-period systems. Bansal et al. [26] also measured the multi-period 

additive efficiency of systems with non-positive and undesirable data. Jahani Sayyad Noveiri 

et al. [27] introduced a DEA-based procedure to measure the multi-period efficiency of 

systems in the presence of undesirable outputs. Also, Tamatam et al. [28] used DEA 

technique and measured the efficiency of Indian banking industry over the period 2008–2017 

(also refer to [29, 30]). 

These models ignore the internal structure of systems. Therefore, Kao and Hwang [31] 

expanded the relational network model and proposed a multiplier model that is able to 

calculate the overall efficiency of a multi-period two-stage system and periods at the same 

time. But in this model, the importance of data at the different time periods is equally 

acclaimed. The fact arises that, in this model, the efficiencies under the VRS assumption 

cannot be computed. Esfidani et al. [32], proposed a new additive approach to measure the 

efficiency of multi-period two-stage systems under the CRS and VRS assumptions. In these 

approaches, the indexes are given to identify the progress or regress conditions of the system 

and stages from a period to another period. But these models do not have the capacity to 

determine the type of RTS of two-stage systems in each period and whole time periods. 

Subsequently, Tohidnia and Tohidi [33] proposed methods to measure the multi-period global 

cost efficiency in network systems when the price of exogenous inputs is identified in whole 

time periods. Zhou et.al [34] evaluated the efficiency of banking systems under uncertainty 

with multi-period three-stage structures. A novel multi-period DEA model for measuring the 

efficiencies of parallel and series systems was proposed by Esmaeilzadeh and Kazemi matin 

[35].  

Numerous models have been presented that estimated RTS based on DEA models. 

Banker and Thrall [36] deployed the fractional DEA model and proposed an approach for 

estimating RTS. By using CCR and BCC models, Färe and Grosskopf [37] suggested an 

alternative approach to estimate RTS. An additive model approach for estimating RTS in 

imprecise DEA was also proposed by Khodabakhshi et al. [38] (Refer to ([39-47])). In order 

to evaluate the supply chains, Sharma and Yu [44] introduced multi-Echolen DEA VRS 

models; whilst for determining the RTS of an integer-value, a DEA model was presented by 

Taleb et.al [44]. Benicio and De Mello [48] also offered a different type of RTS in DEA, 

where, the possibility of the presence of a concave upward efficient frontier was taken under 

consideration. 

The mentioned studies focus on evaluating the RTS of black box systems. Khaleghi et.al 

[49] determined the classification of the RTS and scale elasticity of two-stage systems based 

on contemplating the scale elasticity in each stage. Zhang and yang [50] introduced some 

models to determine the type of RTS in a two-stage system by utilizing the DEA envelopment 

models within a specific time. In fact, firstly, they solved the model to identify the efficient 

DMUs in the stages and the entire system. Then, two models for determining the RTS 

corresponding to each stage (and the whole system) are presented. Hence, their methods have 

a complex structure in specifying RTS. Also, Fakhr Mousavi et al. [51] presented a different 

non-radial procedure that measure the RTS and scale economies (SE) of network structures. 

Recently, many articles have been presented in various fields of data envelopment analysis. 

For example, Lexicographic decomposition strategy for the two-stage network DEA model is 

suggested by Yang and Fang [52]. A book in the field of uncertainty in data envelopment 

analysis is presented by Hosseinzadeh Lotfi et al. [53]. Also, Yu [54] suggested a non-desired 

output and non-radial DEA model for measuring industrial parks’ green development 

performance. A non-desired output and non-radial DEA model for measuring industrial parks’ 

green development performance is suggested by Yu [2023]. (Also, refer to [55-57]) 
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Unlike the standard DEA, network DEA imposes hurdles for measuring scale efficiency 

due to the fact that (i) overall efficiency aggregated by the stage or divisional technical 

efficiencies is highly non-linear and only solvable in a heuristic manner, or (ii) the overall 

efficiency which concerns exclusively inputs and outputs of a system is difficult to be 

decomposed into divisional efficiencies. In this paper, we establish a mathematical 

transformation to convert the corresponding non-linear programming problem into second 

order cone programming. The transformation is shown to be versatile in dealing with both 

CRS and VRS models under the two-stage network DEA. 

So far, a multiplier model, for calculating the efficiency of a multi-period two-stage 

systems under a VRS assumption, has not been presented. Therefore, we seek to present an 

approach, which calculates the efficiency of the whole system as well as the stages of 

efficiency of multi-period two-stage systems in each period and whole time periods, without 

complexity; thereby, determining the RTS status of multi-period two-stage systems, 

simultaneously. For this purpose, being attentive to the significance of data in time periods, is 

a crucial issue. Hence, in this paper, we will propose a model which evaluates the efficiency 

of multi-period two-stage systems under the VRS assumption such that, the importance of 

data is considered diversely in different time periods; whereas, the overall efficiency of the 

system over the whole time periods is decomposed as a product of the efficiency of stages. In 

addition, the overall efficiency of system can be decomposed to the efficiency of stages in 

each period. On the whole, the efficiency of the system (or efficiency of stages) in whole time 

periods can be decomposed as a weighted average of the overall efficiency (or efficiency of 

stages in each period. Theorems are also being presented to determine the type of RTS of the 

full system and stages in each period, including whole time periods. Actually, on the basis of 

these theorems, if stages 1 and 2 comprise of IRS (or DRS or) CRS in each period (or whole 

time periods), the whole system will enclose IRS (or DRS), or CRS in each period (or whole 

time periods). We will also demonstrate that if one of the stages has IRS (or DRS) and 

another stages has CRS in each period (or whole time periods), the whole system shall include 

IRS (or DRS) in each period (or whole time periods). And if one of the stages has IRS and 

another stage has DRS in each period (or whole time periods), we shall present the theorem 

which identifies the condition of the RTS of the whole system in each period (or whole time 

periods). Finally, we can briefly state that by solving a model, we are able to specify the type 

of RTS in multi-period two-stage systems whilst calculating their efficiencies. 

The rest of this paper is organized as follows: Initially, we introduce the structure of a 

two-stage system and review the two-stage DEA model proposed by Wang and Chin [5]. 

Next, by presenting the structure of a multi-period two-stage system, we shall review the 

model presented by Kao and Hwang [31]. In Section 2, we suggest a model to measure the 

multi-period two- stage system by considering the importance of data in a diverse manner in 

time periods in Section 3. The decompositions of the efficiencies are also proposed. In 

addition, we determine the type of the returns to scale of a multi-period two- stage system in 

each period and whole time periods. In Section 4, we present the results of a case study in 

Taiwanese non-life companies. Section 5 presents our conclusions and future research 

directions (guidelines). 

 

 

 

 

 

 
 

 [
 D

O
I:

 1
0.

71
88

5/
ijo

rl
u-

20
23

-1
-6

46
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
ao

r.
co

m
 o

n 
20

26
-0

1-
31

 ]
 

                             4 / 23

http://dx.doi.org/10.71885/ijorlu-2023-1-646
http://ijaor.com/article-1-646-en.html


Identify the status of returns to scale of the multi-period two-stage systems and efficiency decomposition 5 

 

2 Preliminaries 

 

Suppose there are n DMUs with two-stage structure that , ,j j jx z y are input, intermediate 

measure and output corresponding to each  1, ,jDMU j n  . The structure of a two-stage 

system is depicted in Figure 1. 
 
                                                      

jx
                                jz

                               jy  

 

 
Fig. 1 Two-stage production system 

 

Wang and Chin [5] proposed the following model which calculates the VRS efficiency of 

two-stage systems at a certain time period: 
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Note that , ,i r d   are the weights of inputs, outputs and intermediate measures 

corresponding to a two-stage system. Now, suppose we have n DMUs with two-stage 

structure and there are q time periods. Figure 2 shows the structure of a multi-period two-

stage system. In time period p, each  1, ,jDMU j n   in Stage 1, consumes inputs 

; 1,...,p

ijx i m to produce intermediate products ; 1,...,Dp

djz d  , and then in Stage 2, consumes 

the intermediate products ; 1,...,Dp

djz d   to produce outputs ; 1,...,sp

rjy r  . We consider

1

q
p

ij ij

p

x x
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q
p
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z z


 , 
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p

y
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  as the aggregate inputs, intermediate products and 

outputs of 
jDMU , respectively. 
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Fig. 2 Multi-period two-stage system 

 

In order to evaluate the efficiency of this system, Kao and Hwang [31] suggested the 

following model that measures the efficiency of a system and stages in each time period and 

whole time periods, simultaneously: 
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3 The proposed generalized model 

In this section firstly, we will suggest a model to measure the VRS efficiency of multi-period 

two-stage systems. At the end, some definitions and theorems are given to identify the type of 

the RTS of system and stages in each period p and whole time periods. Note that, in model 

(2), the data has equal importance in different time periods. Actually, the weights of inputs     

( i ), the weights of outputs ( r ) and the weights of intermediate products weights ( d ) are 

similar in all periods; and in many situations it is also necessary to calculate the VRS 

efficiency and identify the status of RTS corresponding to the whole system and stages in 

each of the time periods as well as the whole time periods. In this case, this model is not 

applicable. Thus, we modify this model and use model (1) to introduce a model to overcome 

these shortcomings. Actually, we perform VRS efficiency calculation and identify the RTS 
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status of multi-period two-stage systems by solving a model. Hence, by considering the input 

weight p

i , the output weight p

r and the intermediate products weight p

d to time period time 

p, the generalized model is given as follows: 
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This model can be converted to the linear form, easily. By solving model (3), the 

efficiencies of the system in each period p  and over q time periods are obtained as follows: 
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Wherein, ,s

o oE E and 
oE   demonstrate the overall efficiency of the system and efficiency 

of stage 1 and the efficiency of Stage 2 during the whole time period q respectively. In a 

similar way, 
( ) ( ),s p p

o oE E
and (p)

oE  give the overall efficiency and efficiencies of stages 1 and 2 

in time period p , respectively. 

Theorem 1. It is noted that oDMU  is overall efficient if and only if 1s

oE  .  And also, 
oDMU

is efficient in stage 1, 2 over q  time periods if and only if 1o oE E   . 
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3.1 The decompositions of efficiencies 

 

We can decompose the overall efficiency of the system to the product of the efficiencies of 

stages, in each of the periods, p and over q time periods. Now, in order to show the 

relationships between the overall efficiency of the system in each period p and whole time 

periods, including the correlations between the efficiency of stages over the q time period and 

efficiency of stages in each period p , we introduce the following relationships: 
( ) ( ) (p)      ,      s s p p

o o o o o oE E E E E E      
 

Therefore, we can decompose the overall efficiency of system to product of the efficiencies of 

stages in each period p and over q time periods. Now, in order to show the relationships 

between the overall efficiency of the system in each period p and whole time periods, and the 

relationships between the efficiency of stages over q time period and efficiency of stages in 

each period p , we introduce the following relationships: 

p* 1 *

( ) 1

p* 1 *1

1 1 1

p* 1 *

( ) ( ) ( ) 1

p* 1 *1

1 1 1

( ) ( ) (

,             

,             

,             

m
p p

i ioq
s p s p p i
o o q qm

p pp

i io

p i p

m
p p

i ioq
p p p i

o o q qm
p pp

i io

p i p

p p p

o o

x u

E E

x u

x u

E E

x u

E E



 





 



 





  

    



  

   



 





 








 




 

p*

) 1

p*1

1 1

D
p

d doq

d

q D
pp

d do

p d

z

z









 







 
( )p  can be considered by the proportion of the aggregated input consumed by stage 2 in 

period to the total aggregated inputs consumed by stage2 over whole time periods. It can be 

concluded that the weighted average of the efficiencies of periods is defined as the overall 

efficiency of the system over q time period. Note that, decomposition of the efficiencies can 

be done as follows: 

( ) ( ) ( ) ( )

1 1

( ) ( ) ( )

1 1

( )( )           

( * )

q q
s p p p p

o o o o o

p p

q q
s p s p p p p

o o o o

p p

E E E E E

E E E E

     

 

 

 

  

 

 

 

 

 

 
Finally, by using the above decompositions, we get the following theorem: 

Theorem 2. The multi-period two-stage system is efficient under the VRS assumption, if and 

only if its stages are efficient under the VRS assumption in the all periods. 

In the cases where, the optimal solution of the model (3) may not be unique or distinctive, the 

overall efficiency decomposition will not be characteristic. We shall also not be able to 

compare the efficiency of different DMUs together. So, we follow the Kao, Hwang( [3], [31]) 

approaches here, to find a set of multipliers (coefficients)  for this period and compare the 

efficiency of DMUs in a period,  which produces the largest efficiency, while in general, the 

efficiency of the system is unchanged. This approach is persistent for other periods. Note that 

each period has a two-stage structure and we assume that the efficiency of period t , is the 

most important period. Thus, if the first is stage 1, in terms of period t , it is more important 

than the second stage of the same period, in order to calculate the maximum efficiency of 
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Stage 1, the following model is solved, while the efficiency of period t and the overall 

efficiency remain unaltered: 

( ) 1

1

1

1

1

1

2

1

1

        

max     

        

 .    1,           1,...,              (4)

        1,           1,...,

        

D
t t

d do
t d

o m
t t t

i io

i

D
t t

d dj

d

m
t t t

i ij

i

s
t t t

r rj

r

D
t t

d dj

d

p

r

z

E

x u

z

s t j n

x u

y u

j n

z















 















 





 













2

1 1 1

1

1 1 1

2

( )1

1

1

                         

        

        , , 0,              1,...,       1,...,      1,...,   

q qs
p p

ro

p r p s

oq qm
p p p

i io

p i p

s
t t t

r ro
s tr
om

t t t

i io

i

p p p

i r d

y u

E

x u

y u

E

x u

i m r s d D







  

  

  

















   

 

 





1 2

  1,...,

        ,                    1,...,p p

p q

u u free p q



  
Then, the efficiency of stage 2 is ( ) ( ) ( )/t s t t

o o oE E E  . Finally, we note that in model (3), if 

1 1 0,   1,...,p pu u p q   , this model is converted to the Kao and Hwang model [31]. 

 

 

3.2 Determining RTS in multi-period two-stage systems 

 

In this subsection, firstly, we will introduce the basic definitions of production possibility set 

(PPS) and RTS corresponding to the multi-period two-stage systems. Then, theorems are 

presented to identify the type of RTS of whole system and stages in each period p and over q 

time periods. In following Banker et al. [51], we primarily define the PPS of Stage 1 in  

period 
1( )pp T , of Stage 2 in period 

2( )pp T , of the system in  period ( )pp T , of Stage 1 in the 

whole time periods 1( )T , of Stage 2 in the whole time periods 2( )T and of the system of Stage 

1, in the whole time periods ( )T , as follows: 
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




1

2

1
1,...,

(x , z ) X x ,  Z z ,  1 =1,  0

(z , y ) ,  Y ,  1 =1,  0

(x , z , y ) X x , Z z , ,Y ,  1 =1,  1 =1, 0,  0

(x , z ) X x ,  Z z ,  1 =1,  0,  

p p p p p p p p p p

p

p p p p p p p p p p

p

p p p p p p p p p p p p p p p p p p p

p

p p p p p p p p p p

p q

T

T Z z y

T Z z y

T p

   

   

       

   


   

   

      

   

2
1,...,

1,...,

1,...,

(z , y ) ,  Y ,  1 =1,  0,  1,...,

(x , z , y ) X x ,  Z z , ,  Y ,  1 =1,  1 =1, 0, 0, 1,...,

p p p p p p p p p p

p q

p p p p p p p p p p p p p p p p p p p

p q

q

T Z z y p q

T Z z y p q

   

       





 
 



 
     



 
        



Where, 
1 2 1 1 2 2

1 1 1

,  ,  
q q q

p p p

p p p

T T T T T T T T
  

    . 

The following definitions are introduced for detecting the type of RTS in whole system (or 

Stage 1, or Stage 2) in a certain time period p . 

Definition1.  Suppose oDMU is efficient in the whole system and 
pT T . Then, 

1-1. oDMU  in the whole system has increasing returns to scale ( IRS ), if there is * 0  , such 

that: 
*(0, ]  ((1 ) ,(1 ) ,(1 ) ) into o oZ x z y T             

1-2. 
oDMU  in the whole system (has decreasing returns to scale ( DRS ), if there is  '* 0  , 

such that: 

'

' '* ' ' '(0, ]  ((1 ) ,(1 ) ,(1 ) ) into o oZ x z y T


           
. 

1-3.  
oD M U in the whole system has constant returns to scale ( CRS ), if there are 

* '*0 ,  0   , such that at least one of the following conditions holds: 

'

'

*

' '* ' ' '

*

' '* '

(0, ]  ((1 ) , (1 ) , (1 ) )  
1 3 1.

(0, ]  ((1 ) , (1 ) , (1 ) )  

(0, ]  ((1 ) , (1 ) , (1 ) )
1 3 2.

(0, ]  ((1 ) , (1

o o o

o o o

o o o

o

Z x z y is efficient

Z x z y is efficient

Z x z y T

Z x









    

    

    

  

      
  

      

       
 

    

'

' '

*

' '* ' ' '

*

' '*

) , (1 ) ) T

(0, ]  ((1 ) , (1 ) , (1 ) )  
1 3 3.

(0, ]  ((1 ) , (1 ) , (1 ) ) T

(0, ]  ((1 ) , (1 ) , (1 ) ) T  
1 3 3.

(0, ]  

o o

o o o

o o o

o o o

z y

Z x z y is efficient

Z x z y

Z x z y

Z









 

    

    

    

 




  

      
  

       

       
 

   '

' ' '((1 ) , (1 ) , (1 ) )  o o ox z y is efficient  




     
Also, similar Definitions can be given for the stage 1 with 

1pT T ,  ((1 ) ,(1 ) )o oZ x z     , 

'

' ' ((1 ) ,(1 ) )o oZ x z


     and stage 2 with 2 pT T , ((1 ) ,(1 ) )o oZ z y     , 

'

' '((1 ) ,(1 ) )o oZ z y


    . Therefore, based on the optimal solutions of model (3), we 

presented theorems to identify the type of RTS in a multi-period two-stage system. By using 

the status of the sign 1 *pu in period p and Definition 1, theorem 3 is rendered to recognize the 

type of RTS of 
oDMU  in stage 1. 

Theorem3. Suppose oDMU  is efficient in stage 1 of period p , i.e ( ) 1p

oE  , then 

3-i.  If 1 * 0pu  , oDMU  in stage 1 of period p has IRS . 
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Proof .Suppose (p)* (p)* (p)* 1 * 2 *( , , , , )p pu u    is the optimal solution of model (3) and there is 
p* 0   such that p*((1 ) ,(1 ) ),  (0, ]p

p p p p p p

o oZ x z


       . Since 
oDMU is efficient in stage 1 of 

period p , we have:   ( )* ( )* 1 * 0p p p p p

o oz x u    . In this case, 
( )* ( )* 1 * ( )* ( )*

1

1 * 1 * 1 * ( )* ( )* 1 * 1 * 1 * 1 *

(1 ) (1 ) x ( x )(1 )

( x )(1 ) 0

p

p p p p p p p p p p p p p

o o o o

p p p p p p p p p p p p p p p p p

o o

P z u z

u u u z u u u u


      

       

        

            
If 1 * 0pu  , we have 

1 0p

pP

 . Therefore,

1intp

p

pZ T

  and according to Definition 1, oDMU  

in stage 1 of period p has IRS  and the proof is complete.  

3-ii.  If 1 * 0pu  , oDMU  in stage 1 of period p  has DRS . 

Proof. Suppose 
(p)* (p)* (p)* 1 * 2 *( , , , , )p pu u   is the optimal solution of model (3), and for period

p , there is 'p* 0  such that, 'p

'p 'p ' 'p*((1 ) ,(1 ) ),  (0, ]p p p p

o oZ x z


       . Since oDMU  is 

efficient in stage 1 of period p , we have: ( )* ( )* 1 * 0p p p p p

o oz x u    . In this case, 

'p

( )* 'p ( )* 'p 1 * ( )* ( )* 'p

1

1 * 'p 1 * 'p 1 * ( )* ( )* 1 * 'p 'p 1 * 'p 1 * 'p 1 *

(1 ) (1 ) x ( x )(1 )

( x )(1 ) 0

p p p p p p p p p p

o o o o

p p p p p p p p p p p

o o

P z u z

u u u z u u u u


      

       

        

           
Thus, if 1 * 0pu  , we have 'p1 0pP


 . Therefore, ' 1intp

p

pZ T

  , and according to Definition 1, 

oDMU in stage 1 of period p  has DRS .  

3-iii. If 1 * 0pu  , oDMU  in stage 1 of period p  has CRS . 

Proof. Suppose
(p)* (p)* (p)* 1 * 2 *( , , , , )p pu u   is the optimal solution of model (3) and there are

p* 'p*0 ,  0   , such that 

'p

p*

'p 'p ' 'p*

((1 ) , (1 ) ), (0, ]   

((1 ) , (1 ) ), (0, ]

p

p p p p p p

o o

p p p p

o o

Z x z

Z x z





   

   

    


     
Since oDMU is efficient in stage 1 of period p , we have: ( )* ( )* 1 * 0p p p p p

o oz x u    .  In this 

case, 

'p

( )* ( )* 1 * ( )* ( )*

1

1 * 1 * 1 * ( )* ( )* 1 * 1 *

( )* 'p ( )* 'p 1 * ( )* ( )* 'p

1

1 *

(1 ) (1 ) x ( x )(1 )

( x )(1 ) 0

(1 ) (1 ) x ( x )(1 )

p

p p p p p p p p p p p p p

o o o o

p p p p p p p p p p p p p

o o

p p p p p p p p p p

o o o o

p

P z u z

u u u z u u

P z u z

u





      

     

      

        

       

        

'p

'p 1 * 'p 1 * ( )* ( )* 1 * 'p 'p 1 *

1 1

( x )(1 ) 0

0p

p p p p p p p p

o o

p p

u u z u u

P P
 

     








        

    
Thus, if 1 * 0pu  , then, ',p p

p pZ Z
 

are efficient in stage 1 of period p  and according to 

Definition 1, 
oDMU  in stage 1 of period p has CRS . 

In whole time periods, based on Definition 1 and the sign status of 
1 *

1

q
p

p

u


 , we can identify 

the type of RTS 
oDMU  in stage 1. For this reason, we present the following theorem: 

Theorem4.  Suppose 
oDMU  is efficient in stage 1 over q  time periods, i.e 1oE  , 

4-i.  If
1 *

1

0
q

p

p

u


 , oDMU in stage 1 of q time period has IRS . 
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Proof. Suppose (p)* (p)* (p)* 1 * 2 *( , , , , )p pu u   is the optimal solution of model (3), and 

corresponding to each period p , ( 1,..., )p q , there are * 0,  1,...,p p q    such that: 
p*((1 ) ,(1 ) ) ,  (0, ];  1,...,p

p p p p p p

o oZ x z p q


        .Since 
oDMU  is efficient in Stage 1 over q  

time periods, we have: 
( )* ( )* 1 * 0 , 1,...,p p p p p

o ow z v x u p q   
 

In this case, 

( )* ( )* 1 * ( )* ( )*

1

1 * 1 * 1 * ( )* ( )* 1 * 1 *

1 * 1 * 1 * 1 *

1

1 1 1

(1 ) (1 ) ( )(1 )

( x )(1 )

0 , 1,...,   

p

p

p p p p p p p p p p p p p

o o o o

p p p p p p p p p p p p p

o o o

q q q
p p p p p p p p p

p p p

P z x u z x

u u u z u x u

u u p q P u u





      

     

   
  


         



       

         


  


 

Therefore, if
1 *

1

0
q

p

p

u


 , then 1

1

0p

q
p

p

P




 . Thus, where p*(0, ] ,  1,...,p p q   . This means 

that according to Definition 1, 
oDMU  has IRS .  

4-ii.  If
1 *

1

0
q

p

p

u


 , oDMU in stage 1 of q  time period has DRS . 

Proof.  It is similar to the proof of (4-i).  

4-iii.  If
1 *

1

0
q

p

p

u


 , oDMU in stage 1 of q  time period has CRS . 

Proof. It is similar to the proof of (4-i). 

Theorem5 determines the type of RTS 
oDMU  in stage 2, by using the sign 2 *pu in period p : 

Theorem5.  Suppose oDMU  is efficient in stage 2 of period p , i.e ( ) 1p

oE  , then 

5-i. If 2 * 0pu  , oDMU  in stage 2 of period p has IRS . 

Proof. Suppose
(p)* (p)* (p)* 1 * 2 *( , , , , )p pu u   is the optimal solution of model (3) and there is 

p* 0   and p*((1 ) ,(1 ) ),  (0, ]p

p p p p p p

o oZ z y


        . Since oDMU  is efficient in Stage 2 of 

period p , we have ( )* ( )* 2 * 0p p p p p

o oy z u    .  In this case, 
( )* ( )* 1 * ( )* ( )* 2 *

2

2 * 2 * ( )* ( )* 2 * 2 * 2 * 2 *

(1 ) (1 ) ( )(1 )

( )(1 ) 0

p

p p p p p p p p p p p p p p

o o o o

p p p p p p p p p p p p p p p p

o o

P y z u y z u

u u y z u u u u


      

       

         

           
Thus, if 2 * 0pu  , then 

2 0p

pP

 . 

2intp

p

pZ T

 and according to Definition 1, oDMU  in stage 2 

of period p has IRS .  

5-ii.  If 2 * 0pu  , oDMU  in stage 1 of period p  has DRS . 

Proof. Suppose (p)* (p)* (p)* 1 * 2 *( , , , , )p pu u   is the optimal solution of model (3), and for period

p , there is 'p* 0  and 
'p

'p 'p ' 'p*((1 ) ,(1 ) ),  (0, ]p p p p

o oZ z y


       . Since oDMU  is efficient in stage 

2 of period p , we have: ( )* ( )* 2 * 0p p p p p

o oy z u    . In this case, 

'p

( )* 'p ( )* 'p 1 * ( )* ( )* 'p

2

2 * ' 2 * ' 2 * ( )* ( )* 2 * 'p ' 2 * ' 2 * ' 2 *

(1 ) (1 ) ( )(1 )

( )(1 ) 0

p p p p p p p p p p

o o o o

p p p p p p p p p p p p p p p p

o o

P y z u y z

u u u y z u u u u


      

       

        

           
Thus, if f 2 * 0pu  , then 'p2

0pP

 . Therefore, ' 2intp

p

pZ T

  and according to Definition 1, 

oDMU  in stage 2 of period p has DRS .  
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5-iii.  If 2 * 0pu  , 
oDMU  in stage 2 has CRS . 

Proof. Suppose (p)* (p)* (p)* 1 * 2 *( , , , , )p pu u    is the optimal solution of model (3) and there are
p* 'p*0 ,  0   , such that 

'p

p*

'p 'p ' 'p*

((1 ) , (1 ) ), (0, ] 

((1 ) , (1 ) ), (0, ]

p

p p p p p p

o o

p p p p

o o

Z z y

Z z y





   

   

    


     
Since 

oDMU is efficient in stage 2 of period p , we have ( )* ( )* 2 * 0p p p p p

o oy z u    . In this 

case, 

'p

( )* ( )* 1 * ( )* ( )*

2

2 * 2 * 2 * ( )* ( )* 2 * 2 *

( )* 'p ( )* 'p 1 * ( )* ( )* 'p

2

2 *

(1 ) (1 ) ( )(1 )

( )(1 ) 0

(1 ) (1 ) ( )(1 )

p

p p p p p p p p p p p p p

o o o o

p p p p p p p p p p p p p

o o

p p p p p p p p p p

o o o o

p

P y z u y z

u u u y z u u

P y z u y z

u





      

     

      

        

       

        

' 2 * ' 2 * ( )* ( )* 2 * 'p ' 2 *( )(1 ) 0p p p p p p p p p p p

o ou u y z u u     








          
Thus, if 2 * 0pu  , then, 

p

pZ


and ' p

pZ


are efficient in stage 1 of period p  and according to 

Definition 1, 
oDMU  in stage 2 of period p  has CRS .  

So too, for determining the type of RTS in stage 2 of 
oDMU  in whole time periods, theorem 6 

is introduced by using the sign
2 *

1

q
p

p

u


 . 

Theorem6. Suppose 
oDMU  is efficient in stage 2 of q  time periods, i.e 1oE  , 

6-i.  If
2 *

1

0
q

p

p

u


 , 
oDMU  in stage 2 of q  time periods has IRS . 

Proof.  Suppose 
(p)* (p)* (p)* 1 * 2 *( , , , , )p pu u   is the optimal solution of model (3) and there are 

p* 0,  1,...,p q    such that, p*((1 ) ,(1 ) ),  (0, ]p

p p p p p p

o oZ z y


       . Since 
oDMU is efficient in 

stage 2 of q  time periods, we have ( )* ( )* 2 * 0,  1,...,p p p p p

o oy z u p q     . In this case, 
( )* ( )* 1 * ( )* ( )*

2

2 * 2 * 2 * ( )* ( )* 2 * 2 *

2 * 2 * 2 *

2
1 1

(1 ) (1 ) ( )(1 )

( )(1 )

0 ,  1,...,  

p

p

p p p p p p p p p p p p p

o o o o

p p p p p p p p p p p p p

o o

q q
p p p p p p p

p p

P y z u y z

u u u y z u u

u u p q P u





      

     

  
 

        

       

       
 

Thus, if
2 *

1

0
q

p

p

u


 , then 2

1

0p

q
p

p

P




 . Therefore, 
2intp

pZ T

 . This means that according to 

Definition 1, 
oDMU  in stage 2 over q  time periods has IRS .  

6-ii.  If 2 *

1

0
q

p

p

u


 , oDMU in stage 2 of q  time periods has DRS . 

Proof. It is similar to the proof of (6-i). 

6-iii.  If 2 *

1

0
q

p

p

u


 ,
oDMU in stage 2 of q  time periods has CRS . 

Proof. It is similar to the proof of (6-i). 

In order to recognize the type of RTS in whole system of period p , the following theorem is 

introduced: 

Theorem7. Suppose 
oDMU  is efficient in period p , i.e. s( ) ( ) ( ) 1p p p

o o oE E E    , 
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7-i.  If 1 * 2 *( ) 0p pu u  , oDMU  has IRS . 

Proof.  Suppose (p)* (p)* (p)* 1 * 2 *( , , , , )p pu u    is the optimal solution of model (3) and there is 
p* 0   such that p*((1 ) ,(1 ) ,(1 ) ),  (0, ]p

p p p p p p p p

o o oZ x z y


         . Since 
oDMU  is efficient 

in period p , we have: 
( )* ( )* 1 *

( )* ( )* 2 *

0

0

p p p p p

o o

p p p p p

o o

z x u

y z u

 

 

   


  

. In this case, 

( )* ( )* 1 * ( )* ( )*

1

1 * 1 * 1 * ( )* ( )* 1 * 1 * 1 * 1 *

( )* ( )* 1 * ( )* ( )*

2

(1 ) (1 ) x ( x )(1 )

( x )(1 ) 0

(1 ) (1 ) ( )

p

p

p p p p p p p p p p p p p

o o o o

p p p p p p p p p p p p p p p p p

o o

p p p p p p p p p p p p

o o o o

P z u z

u u u z u u u u

P y z u y z





      

       

     

        

          

      

2 * 2 * 2 * ( )* ( )* 2 * 2 * 2 * 2 *

1 * 2 *

1 2

(1 )

( )(1 ) 0

( )p p

p

p p p p p p p p p p p p p p p p p

o o

p p p p p

u u u y z u u u u

P P u u
 



       










 
           

      
Thus, if 1 * 2 * 0p pu u  , then

1 2 0p p

p pP P
 
  . Hence intp

pZ T

 and according to Definition 1, 

oDMU  in period p  has IRS . 

7-ii.  If
1 * 2 *( ) 0p pu u  , oDMU has DRS . 

Proof. Suppose
(p)* (p)* (p)* 1 * 2 *( , , , , )p pu u    is the optimal solution of model (3), and for period

p , there is 'p* 0  and 
'p

'p 'p 'p ' 'p*((1 ) ,(1 ) ,(1 ) ),  (0, ]p p p p p

o o oZ x z y


         .  Since 
oDMU  is 

efficient in period p , we have: 
( )* ( )* 1 *

( )* ( )* 2 *

0

0

p p p p p

o o

p p p p p

o o

z x u

y z u

 

 

   


    
In this case, 

'p

'p

( )* 'p ( )* 'p 1 * ( )* ( )* 'p

1

1 * 'p 1 * 'p 1 * ( )* ( )* 1 * 'p 'p 1 * 'p 1 * 'p 1 *

( )* 'p ( )* 'p 1 * ( )*

2

(1 ) (1 ) x ( x )(1 )

( x )(1 ) 0

(1 ) (1 ) (

p p p p p p p p p p

o o o o

p p p p p p p p p p p

o o

p p p p p p p

o o

P z u z

u u u z u u u u

P y z u y





      

       

    

        

         

     

'p 'p

( )* 'p

2 * ' 2 * ' 2 * ( )* ( )* 2 * 'p ' 2 * ' 2 * ' 2 *

'p 1 * 2 *

1 2

)(1 )

( )(1 ) 0

( )

p p p

o o

p p p p p p p p p p p p p p p p

o o

p p p p

z

u u u y z u u u u

P P u u
 

 

       










  


         


     

Thus, if
1 * 2 *( ) 0p pu u  , then 'p 'p1 2

0p pP P
 
  . Therefore, ' intp

p

pZ T

 and according to 

Definition 1, oDMU in period p  has DRS . 

7-iii.  If 1 * 2 * 0p pu u  , oDMU  has CRS .  

Proof. Suppose (p)* (p)* (p)* 1 * 2 *( , , , , )p pu u   is the optimal solution of model (3) and there are
p* 'p*0 ,  0   , such that 

'p

p*

'p 'p 'p ' 'p*

((1 ) , (1 ) , (1 ) ), (0, ]   

((1 ) , (1 ) , (1 ) ), (0, ]

p

p p p p p p p p

o o o

p p p p p

o o o

Z x z y

Z x z y





    

    

     


      

Since 
oDMU  is efficient in period p , we have: 

( )* ( )* 1 *

( )* ( )* 2 *

( )* ( )* 1 * 2 *

0 

0

0 

p p p p p

o o

p p p p p

o o

p p p p p p

o o

z x u

y z u

y x u u

 

 

 

   


  


   

 

In this case, 
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( )* ( )* 1 * ( )* ( )* 1 * 1 * 1 *

1

( )* ( )* 1 * 1 *

( )* ( )* 1 * ( )* ( )*

2

2 *

(1 ) (1 ) x ( x )(1 )

( x )(1 ) 0

(1 ) (1 ) ( )(1 )

p

p

p p p p p p p p p p p p p p p p p p

o o o o

p p p p p p p p

o o

p p p p p p p p p p p p p

o o o o

p p

P z u z u u u

z u u

P y z u y z

u u





        

   

      



           

    

        



'p

2 * 2 * ( )* ( )* 2 * 2 *

1 2

( )* 'p ( )* 'p 1 * ( )* ( )* 'p

1

1 * 'p 1 * 'p 1 * ( )* ( )* 1 * 'p 'p 1 *

2

( )(1 ) 0

0

(1 ) (1 ) x ( x )(1 )

( x )(1 ) 0

p p

p p p p p p p p p p p

o o

p p

p p p p p p p p p p

o o o o

p p p p p p p p p

o o

p

u y z u u

P P

P z u z

u u u z u u

P

 



    

      

     

      

  

        

       

'p

' '

( )* 'p ( )* 'p 1 * ( )* ( )* 'p

2 * ' 2 * ' 2 * ( )* ( )* 2 * 'p ' 2 *

1 2

(1 ) (1 ) ( )(1 )

( )(1 ) 0

0p p

p p p p p p p p p

o o o o

p p p p p p p p p p p p

o o

p p

y z u y z

u u u y z u u

P P



 

      

     




















        


       
    
Therefore, if 1 * 2 * 0p pu u   then, ',p p

p pZ Z
 

are efficient in period p and according to 

Definition 1, oDMU in period p  has CRS .  

Theorem 8 use the sign 
1 * 2 *

1 1

( )
q q

p p

p p

u u
 

   and Definition 1 to determine the type of RTS of 

oDMU in whole time periods: 

Theorem8. Suppose 
oDMU  is efficient over q time periods, i.e 1s

o o oE E E     , 

8-i.  If 1 * 2 *

1 1

( ) 0
q q

p p

p p

u u
 

   , 
oDMU over q  time periods has IRS . 

Proof. Suppose (p)* (p)* (p)* 1 * 2 *( , , , , )p pu u   is optimal solution of model (3) and there are 
* 0,  1,...,p p q   such that p*((1 ) ,(1 ) ,(1 ) ),  (0, ]p

p p p p p p p p

o o oZ x z y


         . Since 
oDMU  is 

efficient over q  time periods, we have: 
( )* ( )* 1 *

( )* ( )* 2 *

( )* ( )* 1 * 2 *

0 , 1,...,

0 , 1,...,

0 , 1,...,

p p p p p

o o

p p p p p

o o

p p p p p p

o o

z x u p q

y z u p q

y x u u p q

 

 

 

    


   


      
In this case, 

( )* ( )* 1 * ( )* ( )*

1

1 * 1 * 1 * ( )* ( )* 1 * 1 * 1 * 1 *

( )* ( )* 2 * ( )* ( )*

2

(1 ) (1 ) ( )(1 )

( x )(1 ) 0

(1 ) (1 ) (

p

p

p p p p p p p p p p p p p

o o o o

p p p p p p p p p p p p p p p p p

o o o

p p p p p p p p p p p

o o o o

P z x u z x

u u u z u x u u u

P y z u y z





      

       

     

        

          

      

2 * 2 * 2 * ( )* ( )* 2 * 2 * 2 * 2 *

1 * 2 * 1 * 2 *

1 2

1 * 2 * 1 * 2 *

1 2

1 1 1

)(1 )

( )(1 ) 0

( ) , 1,...,

( ) ( ( )) ( )

p p

p p

p p

p p p p p p p p p p p p p p p p p

o o

p p p p p p p p p

q q q
p p p p p p p p

p p p

u u u y z u u u u

P P u u u u p q

P P u u u u

 

 



       

  

 
  






 

          

       

         














  
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Therefore, if
1 * 2 *

1 1

( ) 0
q q

p p

p p

u u
 

   , then 1 2

1

( ) 0p p

q
p p

p

P P
 



   and thus

*int , (0, ]p

p p pZ T


   . This means that according to Definition 1, 
oDMU  has IRS .  

8-ii.  If 1 * 2 *

1 1

( ) 0
q q

p p

p p

u u
 

   ,
oDMU over q  time periods has DRS . 

Proof. It is similar to the proof of (8-i). 

8-iii. If 1 * 2 *

1 1

0
q q

p p

p p

u u
 

   ,
oDMU over q  time periods has CRS . 

Proof. It is similar to the proof of (8-i). 

So, by using these theorems, it can be said that a multi-period two-stage system has IRS (or 

DRS  or CRS ) if and only if stage 1 and stage 2 have IRS  (or DRS  or CRS ) in whole time 

periods. And if one stage has IRS  and the other has DRS in each period p (or whole time 

periods), theorem 7 (or theorem 8) can identify RTS status of whole system in each period p  

(or whole time periods). 

 

 

4 Case study 

 

In this section, we will illustrate the proposed models with Taiwanese non-life insurance 

companies studied in Kao and Hwang [31] to compare the obtained results with their results. 

They surveyed the efficiency of 21 non-life insurance companies with the data in 2000, 2001, 

2002 years. Each insurance companies can be viewed as DMU with two-stage structure. In 

this evaluation, inputs are "Operating expenses" and "Insurance expenses", intermediate 

products are "Direct written premiums" and "Reinsurance premiums". Also, "Underwriting 

profit" and "Investment profit" are considered as outputs. 

 

 

4.1 Results of model (3) 

 

The efficiencies of DMUs under the VRS assumptions based on the model (3), are reported in 

the following Table: 

 
Table 1. Results of Model (3) 

 

DMU 

 

period 

 

Overall efficiency 

 

Efficiency of stage 1 

 

Efficiency of stage 2 

1 1 

2 

3 

Whole period 

0.5287 

0.5841 

1 

0.9665 

0.9930 

0.9732 

1 

0.9987 

0.5325 

0.6002 

1 

0.9678 

2 1 

2 

3 

Whole period 

0.9295 

0.6317 

0.6246 

0.8939 

0.9862 

1 

1 

0.9879 

0.9425 

0.6317 

0.6246 

0.9048 

3 1 

2 

3 

1 

1 

1 

1 

1 

1 

1 

1 

1 
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Whole period 1 1 1 

4 1 

2 

3 

Whole period 

0.6181 

0.6655 

0.2946 

0.6377 

0.7931 

1 

0.8601 

0.9761 

0.7794 

0.6655 

0.3425 

0.6533 

5 1 

2 

3 

Whole period 

0.5641 

0.4873 

0.3953 

0.5458 

0.9264 

0.7737 

0.7841 

0.9050 

0.6089 

0.6289 

0.5041 

0.6031 

6 1 

2 

3 

Whole period 

0.5656 

0.5952 

0.5068 

0.5811 

0.8855 

0.8632 

0.7916 

0.8568 

0.6388 

0.6895 

0.6403 

0.6782 

7  1  

2 

3 

Whole period 

0.1365 

0.4312 

0.2722 

0.4038 

0.9483 

1 

1 

0.9969 

0.1439 

0.4312 

0.2722 

0.4050 

8 1 

2 

3 

Whole period 

0.5800 

0.3922 

0.7789 

0.7496 

0.8392 

0.8061 

0.7789 

0.7831 

0.6912 

0.4866 

1 

0.9572 

9 1 

2 

3 

Whole period 

0.3967 

0.3346 

0.3042 

0.3882 

0.8796 

0.7791 

0.6914 

0.8635 

0.4510 

0.4295 

0.4401 

0.4496 

10 1 

2 

3 

Whole period 

0.8847 

0.7452 

0.7771 

0.8709 

0.9778 

0.9851 

0.8836 

0.9718 

0.9047 

0.7565 

0.8794 

0.8962 

11 1 

2 

3 

Whole period 

0.8577 

0.9193 

0.4115 

0.8683 

0.9583 

0.9193 

0.8495 

0.9154 

0.8951 

1 

0.4844 

0.9486 

12 1 

2 

3 

Whole period 

0.6008 

0.3863 

0.3743 

0.5759 

0.8837 

0.7555 

0.6571 

0.8630 

0.6799 

0.5114 

0.5679 

0.6673 

13 1 

2 

3 

Whole period 

1 

1 

0.6762 

0.9800 

1 

1 

1 

1 

1 

1 

0.6762 

0.9800 

14 1 

2 

3 

Whole period 

0.4572 

0.3510 

0.3710 

0.4506 

0.8198 

0.8866 

0.9283 

0.8260 

0.5577 

0.3959 

0.3996 

0.5456 

15 1 

2 

3 

Whole period 

0.8432 

0.7441 

0.6559 

0.8258 

0.9623 

0.7441 

0.6559 

0.9311 

0.8762 

1 

1 

0.8869 

16 1 

2 

3 

Whole period 

0.5167 

0.5304 

0.3028 

0.5167 

0.8416 

0.8445 

0.7492 

0.8416 

0.6140 

0.6280 

0.4042 

0.6140 

17 1 

2 

3 

Whole period 

0.6509 

0.3808 

0.9196 

0.9151 

1 

1 

1 

1 

0.6509 

0.3808 

0.9196 

0.9151 
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In Table 1, the columns 3, 4 and 5 indicate the overall efficiencies and efficiency of stages 

respectively. In period1,  3,13,17,19,20DMUs in stage 1 and  3,13,19,21DMUs  in stage 2 are 

efficient. Hence,  3,13,19DMUs are overall efficient. Between inefficient DMUs , in whole 

system and stage 2 the highest efficiency belongs to 
2DMU and the lowest efficiency belongs 

to 
7DMU .  Also, 

4 1,DMU DMU  have the best and the lowest efficiencies in stage 1 of period 1. 

It is clear that  3,13,19DMUs  are overall efficient in period 2. Then, 
10DMU  has the best 

efficiency and 
21DMU has the lowest efficiency in stage 1 and stage 2 of period 2.  In period 3, 

DMUs 1, 3, 19 are overall efficient. Between inefficient DMUs , 
20DMU  has the worst 

efficiency in stage 2 and whole system. In period 3, the best efficiency in stage 2 and whole 

system belongs to
17DMU . In stage 1, 

14 15,DMU DMU have the highest and the lowest 

efficiency, respectively. In whole time periods,  3,19DMUs   are efficient, but all of DMUs  are 

inefficient in Kao and Hwang model. Between inefficient DMUs , the highest and the lowest 

efficiencies belong to 
1 9,DMU DMU  with scores 0.9665, 0.3882, respectively.  In stage 1 

 3,13,17,19DMUs are efficient. Between inefficient DMUs , 
20 17,DMU DMU have the best 

efficiency score in stage 1 and stage 2, respectively. Also, the lowest efficiency belongs to 

8DMU  in stage 1 and 
7DMU  in stage 2. Note that, efficient DMUs in Kao and Hwang model 

are efficient under our model. According to the Table 3, the overall efficiencies obtained from 

Kao and Hwang Model [31] (i.e oCRSE ), is less than or equal the overall efficiencies obtained 

from Model (3), i.e s

oCRS oE E . Also, Table 2 shows the type of return to scale for the VRS 

efficient DMUs  in stage 1, stage 2 and system corresponding to each period and over 3 time 

periods: 

 

Table 2. The type of RTS  

18 1 

2 

3 

Whole period 

0.6473 

0.8349 

0.6721 

0.8334 

0.8061 

0.8349 

0.6721 

0.8341 

0.8030 

1 

1 

0.9992 

19 1 

2 

3 

Whole period 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

20 1 

2 

3 

Whole period 

0.8595 

0.6838 

0.0433 

0.8574 

1 

1 

0.7773 

0.9996 

0.8595 

0.6838 

0.0557 

0.8578 

21 1 

2 

3 

Whole period 

0.8743 

0.1173 

0.0994 

0.8612 

0.8743 

0.6509 

0.6621 

0.8706 

1 

0.1802 

0.1501 

0.9892 

DMU Period RTS(stage1) RTS(stage2) RTS (system) 

 

1 

 

1 

2 

3 

(Whole periods) 

- 

- 

DRS  

- 

- 

- 

DRS  

- 

- 

- 

DRS  

- 

 

2 

1 

2 

- - 

- 

- 

- 

 [
 D

O
I:

 1
0.

71
88

5/
ijo

rl
u-

20
23

-1
-6

46
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
ao

r.
co

m
 o

n 
20

26
-0

1-
31

 ]
 

                            18 / 23

http://dx.doi.org/10.71885/ijorlu-2023-1-646
http://ijaor.com/article-1-646-en.html


Identify the status of returns to scale of the multi-period two-stage systems and efficiency decomposition 19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 

( Whole periods) 
DRS  

DRS  

DRS  

- 

- 

- 

- 

- 

 

3 

1 

2 

3 

( Whole periods) 

DRS  

DRS  

DRS  

DRS  

CRS  

CRS  

DRS  

DRS  

DRS  

DRS  

DRS  

DRS  

 

4 

1 

2 

3 

( Whole periods) 

- 

IRS  

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

 

7 

1 

2 

3 

( Whole periods) 

- 

DRS  

IRS  

- 

- 

- 

- 

- 

- 

- 

- 

- 

 

8 

1 

2 

3 

( Whole periods) 

- 

- 

- 

- 

- 

- 

DRS  

- 

- 

- 

- 

- 

 

11 

1 

2 

3 

( Whole periods) 

- 

- 

- 

- 

- 

- 

DRS  

- 

- 

- 

- 

- 

 

13 

1 

2 

3 

( Whole periods) 

IRS  

DRS  

DRS  

- 

DRS  

DRS  

- 

- 

DRS  

- 

- 

- 

 

15 

1 

2 

3 

( Whole periods) 

- 

- 

- 

- 

- 

DRS  

DRS  

- 

- 

- 

- 

- 

 

17 

1 

2 

3 

( Whole periods) 

IRS  

IRS  

IRS  

IRS  

- 

- 

- 

- 

- 

- 

- 

- 

 

18 

1 

2 

3 

( Whole periods) 

- 

- 

- 

- 

- 

IRS  

DRS  

- 

- 

- 

- 

- 

 

19 

1 

2 

3 

( Whole periods) 

IRS  

IRS  

IRS  

IRS  

IRS  

IRS  

DRS  

IRS  

IRS  

IRS  

DRS  

IRS  

 

20 

1 

2 

3 

( Whole periods) 

IRS  

IRS  

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

 

21 

1 

2 

3 

( Whole periods) 

- 

- 

- 

- 

IRS  

- 

- 

- 

- 

- 

- 

- 
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In this Table, The columns 3, 4 and 5 indicate the type of RTS corresponding to stage 1, stage 

2 and system in time periods 1, 2 and 3 and the whole time periods, respectively. As can be 

seen in the column 3, 3DMU  has DRS  in stage 1 of each period, thus based on the Theorem 

4, this DMU has DRS  in stage 1 over whole time periods. Also, this DMU has CRS  in stage 

2 of period 1 and 2 and DRS  in stage 2 of period 3. Thus 3DMU  has DRS  in stage 2 over 

whole time periods. Since DMU has DRS  in each period of whole system, hence, 3DMU  has 

DRS  in whole system over whole time periods. 19DMU , has IRS  in stage 1, 2 of period 1, 2 

and IRS  in stage 1 of period 3 and DRS  in stage 2 of period 3. Thus, in whole system, this 

DMU  has IRS  in period 1 and 2 and DRS  in period 3. Therefore, 19DMU  has IRS  in whole 

system over whole time periods. 17DMU  has IRS  in each period and whole time periods. In 

period 1, 13DMU  has IRS  in Stage 1 and DRS  in Stage 2, thus based on the Theorem4, this 

DMU  has DRS  in the whole system. Also, 20DMU  in stage 1 of period 1 and 2 has IRS  and 

21DMU  has IRS  in stage 2 of period 1. In period 2,  2, 4, 7DMUs  have DRS , IRS  and DRS  

in stage 1 and  15 18,DMU DMU  have DRS  and IRS , respectively. 1DMU has DRS  in stage 1, 

2 of period 3, therefore, this DMU has DRS  in the whole system.  2, 7, 13DMUs  have DRS , 

IRS  and DRS in stage 1 of period 3. And also,  8, 11, 15, 18DMUs  have DRS  in stage 2 of 

period 3. We can make the similar interpretations for other DMUs . 

 

 

5 Conclusions 

 

The traditional two-stage DEA models measure the efficiency of two-stage systems at the 

ascertained time, while the calculation  of the efficiency of these systems is particularly crucial 

during the multi-period time. In this paper, we proposed a generalized model, to measure the 

general efficiency of a multi-period two-stage system under the VRS assumption so that the 

data substance is taken into account in varied time periods.  We also decomposed the overall 

efficiency to the product of the efficiencies of stages in each period (and whole time periods). 

So, the efficiency in general (and that of the stages) in whole time periods was decomposed to 

the weighted average of the overall efficiency (and efficiencies of the stages) in each period. 

The proposed model determined the status of RTS in efficient DMUs in stage 1, 2 and the 

entire system in period p  and over q  time periods. The proposed model can identify sources 

of inefficiency by using the obtained efficiency decompositions. Eventually, we utilized a 

case of related to Taiwanese non-life insurance companies to illustrate the proposed model. 

For future study, one can generalize some models to measure the efficiency of a multi-period 

multi-stage system under the (VRS) and determine the type of returns to scale of each stage in 

period p and over the whole q  time period. Moreover, further research on extending the 

proposed method to measure RTS of the same systems, in the presence of undesirable outputs 

is a motivating course for future research. 
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