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Abstract A complementary follow-on tool is required to optimize the geometric parameters of the 

topology solutions once the flexure design topology of an active micro-architected material has been 

synthesized. This will enable the production of final designs that not only meet the desired DOFs for 

the constituent materials but also best meet the desired performance requirements. This paper 

introduces a computational tool to identify the boundaries of the performance capabilities achieved by 

general flexure system topologies, provided that their geometric parameters are allowed to vary from 

their smallest allowable feature sizes to their largest geometrically compatible feature sizes for given 

constituent materials. The boundaries fully define flexure systems' design spaces and allow designers 

to visually identify which geometric versions of their synthesized topologies best achieve desired 

combinations of performance capabilities.   
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1 Introduction 

 

A model that describes the performance of an active architecture design with a given set of 

design parameters must be established to set up the optimization problem. This model can be 

1-a real experiment, whose parameters can be arbitrarily changed or controlled, 2- a finite 

element analysis (FEA)-based numerical model, 3- a closed-form analytical model for the 

parameterized topologies, or 4- a regression model based on data generated by finite element 

analysis or real experiments. This paper introduces a tool that can optimize the parameters of 

flexure system topologies and be applied to a host of other diverse applications.  

System performance boundary identification is a relatively new field of study, but it 

shares many of the same objectives as the well-studied multi-objective optimization. A multi-

objective optimization problem (MOOP) deals with more than one objective function, which 

aims to find a set of solutions to simultaneously optimize all the objective functions. Several 

methods, such as the weighting method as one of the most widely used methods, have been 

proposed to solve sets of local or global Pareto-optimal solutions [1]. The ε-constraint method 
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was first proposed by Haimes et al. [2], the method of the global criterion was first unveiled 

by Yu [3], and the achievement scalarizing function (ASF) approach was first introduced by 

Wierzbicki [4,5]. Other solving methods include normal boundary intersection (NBI) [6], 

evolutionary algorithms (EAs) [7], lexicographic ordering [8], and goal programming [9]. 

More recently, MOOP methods have focused on stochastic optimization algorithms, including 

various EAs [10,11]. Such algorithms generate more reliable global Pareto-optimal solution 

sets but require significantly more function evaluations than deterministic algorithms and are 

thus generally better suited for complicated black-box-model optimizations. The boundary 

identification approach proposed in this paper has, in part, been adapted from various 

deterministic MOOP methods such that the complete continuous boundary (including concave 

portions) that circumscribe the performance capabilities achieved by general flexure 

topologies can be identified and refined with a desired accuracy.   

The utility of this computational tool combined with the current flexible assertive 

community treatment (FACT) approach results in a novel advantageous approach that sets 

itself apart from other existing design optimization approaches. Whereas other approaches, 

e.g., topology optimization [12–14] or module optimization [15], simultaneously combine the 

design typology optimization with geometry optimization tasks, the proposed approach 

decouples those tasks in such a way that the time-consuming computations are reserved solely 

for the simpler geometry optimization task only. This optimization occurs after the FACT 

approach has directly generated and finalized the most promising topologies without 

performing expensive iterative calculations. Thus, by decoupling the topology synthesis and 

geometry optimization tasks, the speed at which optimal designs can be generated from start 

to finish, as well as the likelihood of identifying the global optimum solutions, increases. The 

boundary identification approach proposed in this paper has in part been adapted from various 

deterministic multi-objective optimization methods such that the complete continuous 

boundary (including concave portions) that circumscribe the performance capabilities 

achieved by general flexure topologies can be identified and refined with a desired accuracy. 

 

 

2 Performance boundary identification  

 

The optimization problem is set up where a flexure system topology's design parameters are 

the model inputs, xi, and the performance capabilities achieved by the design instantiations 

defined by these corresponding input parameters are the model outputs, fj. Constraint 

functions are also provided to define the combination of input values permissible.   

A boundary search algorithm consists of two main processes: directional maximization and 

gap reduction. Both processes rely on an optimization approach that implements two 

numerical optimization methods, i.e., the Sequential Quadratic Programming (SQP) [16,17] 

algorithm and Augmented Lagrangian Pattern Search (ALPS) [18–20] algorithm, to achieve 

the local extremum of an objective function.  

In each local optimization process, the SQP method is implemented first. The SQP 

method starts with a given initial guess and attempts to compute, or "step to," another " closer 

" point to the local extremum. At each point, the gradient (derivatives) and Hessian matrix 

(the symmetric matrix of second derivatives) of the objective function are approximated using 

adjacent points and then used to construct a Quadratic Programming (QP) subproblem [21]. 

The solution of this QP subproblem is used to compute the step towards the next point. The 

SQP process terminates when the "step" is smaller than a prescribed resolution of the input 

parameter in all directions xi or when it fails to generate the next point. This typically occurs 
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because the derivatives or second derivatives of the specific objective function cannot be 

correctly evaluated to set up the QP subproblem.  

Once the SQP process terminates, the algorithm proceeds with the optimization process 

by implementing the ALPS method to solve for the local extremum of the same objective 

function, starting at the point corresponding to the best inputs (that generate the maximum or 

minimum value of the objective function) identified using the SQP method. The ALPS 

algorithm searches for a better value of the augmented Lagrangian function [22] among a set 

of points, called a mesh, located around the current point (the center point of the mesh) at a 

distance ±ri, along the direction of each input parameter xi. The distance ri is called the mesh 

size and is initially chosen to be between 10% and 30% of the total range of each xi. If there is 

a point among the mesh points that increases the value of the augmented Lagrangian function 

over the current mesh center point, it becomes the new center point in the next step, and the 

mesh size ri increases by a factor of k, which is typically set to be 2. On the other hand, if no 

improvements can be achieved from all the mesh points around the center point, the mesh size 

decreases by a factor of k. The objective function converges to its extremum value by taking 

these iterative steps. The ALPS process terminates when the mesh size is smaller than the 

prescribed resolution in every direction.  

A theoretical example of a system with only two inputs, x1 and x2, is used to conceptually 

explain how the boundary search algorithm employs the local optimization approach to plot a 

concave boundary that circumscribes the full system design space for two of the system's 

achievable outputs, f1(x1, x2) and f2(x1, x2). Figure 8A shows the constraint function for this 

theoretical example as the red spline boundary line.  

The algorithm begins with the directional maximization process. Starting at an initial 

guess, this algorithm first identifies a set of other allowable input combinations that result 

from adding and subtracting the resolution increment of each input, Δxi, to and from the first 

randomly selected combinations of inputs along each input's axis. In the example shown in 

Figure 8A, this first set of input combinations is shown as the four blue dots immediately 

surrounding the blue dot labeled O1,1. Note that although Δx1 is shown as equal to Δx2, these 

resolution increments do not have to be equal for other scenarios. The system's model is then 

used to map all these input combinations to their corresponding output combinations, 

represented by the five blue dots shown in Figure 8B. The original input dot, O1,1, maps to the 

output dot, Z1,1. The SQP algorithm then approximates the gradient and Hessian matrix of the 

objective function defined by  

  

  (     )     ( )   (     )     ( )   (     )                 (1)  

  

using the input and output combinations (i.e., the adjacent blue dots in Figure A and 

Figure 8B), where θ is initially set to 0, the largest f2 output can be pursued first. This gradient 

and Hessian matrix are then used to construct a QP subproblem. In the example shown in 

Figure 8, the newly determined input combination is shown as the red dot labeled O1,2 (Figure 

A). Note that the corresponding output combination of this dot, shown as the red dot labeled 

Z1,2 (Figure B), possesses an f2 value larger than any of the previous blue dots. The SQP 

algorithm then repeats this process by finding a new set of allowable input combinations. In 

the example shown in Figure A, this new set of input combinations is shown as the four red 

dots immediately surrounding the red dot labeled O1,2. Note that each of the five red dots 

shown in Figure A maps to a corresponding red dot in Figure B. Thus, the SQP algorithm 

rapidly finds an efficient path toward a local maximum of the objective function by iteratively 

stepping from one cluster of dots to the next.   
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Once the SQP algorithm terminates, the boundary-plotting algorithm proceeds with the 

optimization process by supplying allowable input combinations mapped to output 

combinations that produce the largest objective-function value identified by the SQP 

algorithm to the ALPS optimization algorithm. In the example shown in Figure A, the SQP 

process could not step beyond the cluster of dots surrounding O1,2 and thus terminated. The 

input combination supplied to the ALPS algorithm is illustrated by the red dot labeled O1,3 in 

Figure A, which maps to the output combination (shown as the red dot labeled Z1,3 in Figure 

B) that achieves the largest f2 value found using the SQP algorithm. The ALPS algorithm 

initially identifies a set of other allowable input combinations that result from adding and 

subtracting an initial mesh size, ri, to and from the input combination supplied to the 

algorithm along each input's axis. The initial mesh size, r2, in Figure A, is set to 20% of the 

range of its corresponding input parameter (i.e., ri=0.2|xi,max-xi,min|). In the example shown in 

Figure A, the first set of ALPS-generated input combinations is depicted as the four purple 

dots surrounding the red dot labeled O1,3. Although r1 is shown as equal to r2, the mesh sizes 

are not typically equal for other scenarios. The system's model is then employed to map these 

input combinations to their corresponding output combinations, represented by the four purple 

dots (Figure B). The ALPS algorithm then identifies if any of these input combinations map 

to an output combination that produces an objective-function value larger than any previously 

produced during the optimization process. Suppose, for instance, that the input combination 

of the example O1,4 (Figure A) maps to the output combination Z1,4 (Figure B) that achieves 

the largest f2 value previously identified. The ALPS algorithm would then step to the dot 

representing that input combination (e.g., O1,4). The algorithm would then identify a set of 

other allowable input combinations that result from adding and subtracting the previous mesh 

size (e.g., ri in this case) multiplied by an expansion factor (i.e., 2) to and from this input 

combination along each input's axis. Thus, for the example shown in Figure A, the next set of 

ALPS-generated input combinations are shown as the three orange dots surrounding the 

purple dot labeled O1,4. These orange input dots shown in Figure A map to the three orange 

output dots shown in Figure B. The algorithm then identifies if any of these output 

combinations produce an objective-function value larger than any previously produced during 

the optimization process. Since none of the orange dots in Figure B possess an f2 value larger 

than Z1,4, the ALPS algorithm would then identify a set of other allowable input combinations 

that result from adding and subtracting the previous mesh size (e.g., 2ri in this case) divided 

by the same expansion factor to and from the input combination O1,4 in Figure A along each 

input's axis. Therefore, for the example shown in Figure A, the next set of ALPS-generated 

input combinations are shown as the three light-green dots surrounding the same purple dot 

labeled O1,4. These light-green input dots shown in Figure A map to the three light-green 

output dots shown in Figure B. Again, since none of the light green dots in Figure B possess 

an f2 value larger than Z1,4, the ALPS algorithm would then identify another set of other 

allowable input combinations that result from adding and subtracting the previous mesh size 

(e.g., ri in this case) divided by the same expansion factor to and from the input combination 

O1,4 in Figure A along each input's axis. Thus, for the example shown in Figure A, the next set 

of ALPS-generated input combinations are shown as the four dark-green dots surrounding the 

same purple dot labeled O1,4. This process repeats until either (i) one of the new input 

combinations maps to an output combination with an objective-function value larger than any 

produced previously, or (ii) the mesh size becomes equal to or less than a specified input 

tolerance, which herein is set to the resolution of the input parameters, Δxi. If the first option 

(i) occurs, the ALPS algorithm will step to the improved input combination, and the ALPS 

process will continue to iterate. If the second option (ii) occurs, it will terminate. For the 
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example shown in Figure A, the second option occurred as the mesh size of the four yellow 

dots shown immediately surrounding the purple dot O1,4 is equal to Δx2, and none of the new 

output dots generated ever surpassed the f2 value of Z1,4, as depicted in Figure B.  

 

 
Fig. 1 Progression of the SQP and ALPS optimization algorithms for θ=0 initialized in the objective function in 

the input space (A) and the corresponding output space (B).  

 

Continued progression of the same optimization algorithms for θ=Δθ incremented in the 

objective function in the same input space (C) and the corresponding output space (D).  

Once the SQP and ALPS algorithms have both run their full course for determining the 

maximum value of J(x1, x2) from Equation (1) for θ=0, θ is then incrementally increased by 

Δθ, which is typically set to a value between π/10 and π/20. Using this new θ parameter, the 

algorithm then computes the value of the objective function in Equation (1) for all existing 

input combinations, which, for the example illustrated in this section, are shown as the dots in 

Figure A. From among these input combinations, the one that produces the maximum 

objective function value for θ=Δθ corresponds to the input combination represented by the dot 

labeled O2,1 in Figure 8A, which maps to the output combination represented by the orange 

dot labeled Z2,1 in Figure B. The algorithm would then supply the SQP algorithm with this 

input combination to generate more input combinations that produce larger objective function 

values as described previously. The four blue dots immediately surrounding the dot labeled 

O2,1 in Figure C would be identified first for the example depicted in this section using this 

approach. These dots map to the four new blue dots shown in Figure D surrounding the dot 

labeled Z2,1. The SQP algorithm would then identify the next input combination (e.g., O2,2 

shown in Figure C) that produces a larger objective function value. Note that the input 

combination dot O2,2 maps to an output combination dot Z2,2 (Figure D) farther away along 

the direction prescribed by the new θ value (i.e., Δθ). As the SQP algorithm continues, four 

other input combinations will be identified immediately surrounding the input combination 

dot O2,2 (colored red) in Figure C. The SQP algorithm would continue in this way until it 

terminates. The ALPS algorithm would then take over where the SQP algorithm left off, as 

described previously until the former terminates as well. Once the ALPS algorithm 
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terminates, the algorithm will have found the input combination that achieves the maximum 

objective function value identified from among those previously tested for θ=Δθ.  

The algorithm iterates this pattern of steps to identify the combinations of output values 

that lie farthest away along their prescribed directions defined by their corresponding θ value 

in a clockwise fashion until θ≥2π (i.e., all the directions have been swept). Any time before θ 

is incrementally advanced, the objective function of Equation (1) is rechecked for every 

combination of input values evaluated up to that point to ensure each of the previously 

identified output dots that used to be the farthest away along their prescribed directions are 

still the farthest away. If a new dot is ever identified to be farther away than a previous dot 

along a specific direction θ (i.e. if a new dot exceeds the dashed lines in Figure B), the 

iterative process is reset to that direction, and the process continues using that improved 

output dot.  

Once the directional maximization process is complete, the α-shape of all the 

combinations of output value points is identified and plotted as the boundary. Many systems 

produce a cloud of output dots that form a concave—not convex—region like the one shown 

in Figure A. If the boundary of such a cloud of output dots is identified, the result would be 

the red boundary shown in Figure B. This boundary would grossly overestimate the 

achievable performance space of the actual system since it is convex rather than concave, like 

the cloud of output dots. Thus, the algorithm adopts the gap reduction process to address this 

issue to reduce the gap size along the boundary curve.   

 
  
Fig. 2 Generated output dots (A); initially identified convex boundary (B); new objective function minimized to 

identify other output dots within circular or elliptical regions (C); elliptical contour plot of the new objective 

function with R=2 (D); boundary updated with a new hmax value (E); the process successfully identifies concave 

boundaries (F)  
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This gap reduction process starts with identifying all the vectors that point from each 

output dot along the existing boundary to their neighboring dots on the same boundary. The 

magnitude, hmax, of the longest vector is identified because this vector points between the two 

output dots (e.g., Zh1 and Zh2, shown in Figure B) that usually correspond to the opening of a 

previously unknown concave boundary. The algorithm then computes a new objective 

function, Jg(x1, x2), defined by 
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for all the input combinations previously evaluated with R=1. This objective function is 

minimized to identify output combinations that lie within circular or elliptical regions like 

those shown in Figure C. The region is circular if R=1 in Equation (2). However, if R 

increases, it becomes an increasingly elongated ellipse, as shown in Figure C. The angle, α, in 

Equation (2) is defined by   

 

        (
             

             
)                                         (3) 

                                  

where f1, Zh1 and f2, Zh1 are the horizontal and vertical components of Zh1, while f1, Zh2 and f2, Zh2 

are those of Zh2 (Figure C). After computing the objective function of Equation (2) for all the 

previously evaluated input combinations for R=1, it identifies the existing input combination 

that produces the minimum objective function value. This input combination maps to the 

output combination closest to the center of the circle shown in Figure C. If no output dots are 

found within the circle, the input combination corresponding to either the output dot Zh1 or Zh2 

will be chosen as the closest to the center of the circle and is thus supplied to the previously 

described SQP and ALPS algorithms to evaluate new input combinations. For the example 

shown in Figure, a new group of blue output dots (Figure C) is generated after optimization. 

Since none of these output dots lies within the center of the circle, the previous R-value in the 

objective function of Equation (2) is multiplied by a factor of 2, and the search region is 

expanded to an ellipse shown in Figure C. Figure E displays an elliptical contour plot of Jg(x1, 

x2) for this R-value (i.e. R=2). If no output dots are found within the new ellipse, the process 

continues to iterate by multiplying the previous R-value by the same factor of 2 to further 

increase the elliptical search region. For the example shown in Figure C, however, output dots 

lie within the elliptical search region corresponding to an R-value of 2. Therefore, the input 

combination that maps to the output dot that lies within this region and possesses the 

minimum objective function value for R=2 is supplied to the SQP-ALPS optimization 

algorithm to identify an even better output dot that achieves an even smaller objective 

function value. This process will produce new output dots (e.g., the new set of orange dots 

shown in Figure 9). Whether or not these new output dots achieve a smaller objective function 

value, the output dot that obtains the minimum objective function value is identified and 

considered part of the system's performance boundary. It is thus redefined as either Zh1 or Zh2. 

In the example shown in Figure E, the Zh2 output dot is redefined. Note also that hmax is 

updated as well. This boundary learning process is repeated until both (i) the horizontal 

component of the boundary vector with the largest magnitude (i.e., hmax) is less than a set 
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percentage of the horizontal distance across the full cloud of output values, and (ii) the 

vertical component of the same vector is also less than the same percentage of the vertical 

distance across the same cloud. This percentage threshold is typically set between 5% and 

10%. 

Additionally, before the largest boundary vector is updated with a new magnitude (i.e., 

hmax), the entire optimization process in this section is repeated using the previous objective 

function in Equation (2) for all θ values. This is to ensure that any new dots evaluated using 

that objective function are allowed to improve the accuracy of the boundary if possible. 

Accordingly, both convex and concave boundaries, like the concave boundary shown in 

Figure F, can be identified that accurately define the achievable performance space of the 

system. 

 

 

3 Conclusions 

 

To set up the optimization problem, a model needs to be established that describes the 

performance of an active architecture design with a given set of design parameters. This 

model can be a real experiment, of which the parameters can be arbitrarily changed and 

controlled, a numerical model based on finite element analysis, a closed-form analytical 

model of the parameterized topologies, or a regression model based on data generated by 

finite element analysis or real experiments. Note also that although the tool is introduced in 

this paper as a tool for optimizing the parameters of flexure system topologies, it could also 

be applied to a host of other diverse applications. 

Although few researchers have directly attempted system-performance boundary 

identification, its goal is similar to the goal of multi-objective optimization, which has been 

studied extensively. A multi-objective optimization problem (MOOP) deals with more than 

one objective function and aims at finding a set of solutions that optimizes all the 

objective functions simultaneously. Several methods have been proposed to solve the local or 

global Pareto-optimal solution set. The boundary identification approach proposed in this 

paper has in part been adapted from various deterministic multi-objective optimization 

methods such that the complete continuous boundary (including concave portions) that 

circumscribe the performance capabilities achieved by general flexure topologies can be 

identified and refined with a desired accuracy. 
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