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Abstract The solid transportation model is one of the most useful models in linear programming
literature. Hence, this study focuses on a development of solid transportation programming with fuzzy
cost coefficients and fuzzy-flexible supply and demand constraints and transportation capacity, which
aims to minimize costs. Considering the available resources (capacity of supply centers), the capacity
of the vehicle is generally considered as the minimum capacity, and the demand is generally considered
as the maximum capacity. To adapt to real conditions, a flexible fuzzy hybrid model is studied for the
solid transportation model with supply and demand constraints and flexible fuzzy vehicles. Generally,
for such models, supply and demand restrictions and vehicles must first be converted into a real form,
and then the associated problem is solved in a deterministic way by using the existing real problem
techniques. Furthermore, a combined Goal programming and parametric approach is proposed to obtain
the best satisfactory solution. Finally, an example is examined to analyze this approach.

Keyword: Fuzzy Linear Programming, Goal Programming, Membership Function, Multi-parametric
Fuzzy Flexible Transportation Problem, Solid Transportation Problem.

1 Introduction

Transportation problem represents one of the most extensively examined topics in the field of
linear programming. As a critical component of national infrastructure, transportation systems
are present in every country. Its activities have an impact on the nation's economic
development, but they also experience several qualitative and quantitative shifts during the
growth process. A solid transport issue is a specific instance of the traditional transportation
problem where the vehicle capacity is considered to minimize the cost of transporting a given
commodity from several sources (factories, manufacturing plants) to multiple destinations
(warehouses, retail establishments). Additionally, the quantity of units transported from the
origin to the destination affects the cost of the service. However, in the real world, transportation
problem variables are determined by unpredictable variables, and because of the unregulated
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aspects of the economic system, we encounter uncertainty and complexity. For researchers to
address these challenges in non-deterministic settings, they must do so. The challenges of
effective transportation in a hazy environment have also been the subject of extensive research.
Since most real-world data is inaccurate and the need for a fuzzy model is increasing, numerous
academics have studied solid transportation in a fuzzy environment. Zhang et al. [1] attempted
to reduce transportation expenses by analyzing the solid transportation issue, in which
resources, demands, and transportation capacity are viewed as fixed fees and inaccurate direct
expenditures. Their proposed algorithm uses uncertainty theory and the tab search algorithm
for model solution, as shown by a comparison of their technique to prior ones. Lastly, they
determine the maximum feasible degree and points of rupture using the recommended
algorithm. Dos [2] utilized Type 2 fuzzy parameters to explore issues relating to solid
transportation with the goal of cutting costs and time. They employed two approaches to address
transportation issues. The first model uses fuzzy type 2 for time and expense, while the second
model uses it for cost, time, and every other variable. With the weighted method, global
standards, and CV-based reduction approach, this method was addressed. With fuzzy goal
programming, Rivaz et al. [3] presented a novel model for solving a multi-objective
transportation problem. It is possible that altering the weights in the modified model will result
in a variety of solutions. A comparison was then made with several existing methods. In an
intuitionistic fuzzy environment, Chhibber et al. [4] investigated a fuzzy solid transportation
problem. Using linear, hyperbolic, and exponential membership and non-membership
functions, they discovered a Pareto-optimal solution to the multi-objective fixed-charge solid
transportation problem. The transportation issue, in which supply, demand, and transportation
costs are Fermatean Fuzzy Numbers (FFNs), was addressed by Sahoo [5]. He developed an
algorithm for solving the transportation problem with Fermatean fuzzy parameters and used
arithmetic operations of Fermatean fuzzy numbers to achieve the best solution. Samanta et al.
[6] proposed a two-stage solution to the solid transportation problem: first, from the origin(s)
to the nearest station(s); second, from the nearest station(s) to the major destination(s).
Depending on the extent of transportation, a fuzzy discount policy was implemented in
conjunction with a fuzzy fixed charge and fuzzy unit transportation costs. The model was solved
using the Genetic Algorithm (GA). Khan et al. [7] proposed the multi-objective pentagonal
fuzzy supply and demand after converting it to its precise form using the decomposition
approach, and then they solved it nonlinearly using goal programming. Qiuping et al. [8] created
a three-dimensional transit model using Triangular Neutrosophic Numbers (TNN) for supply,
demand, transportation capacity, and cost. Then, degree of diversity was used to turn the three-
dimensional Neutrosophic transport problem into an interval programming problem, and two
basic linear programming models were solved to determine the lower and upper bounds of the
ideal solution. Nasseri et al. [9] used the goal programming technique to address a linear
programming issue involving flexible fuzzy numbers. They used goal programming to
determine the best Pareto solution for the simplified multiparametric, multi-objective, linear
programming problem that they had created from the original problem through a series of cuts.
They then applied this strategy to the many different kinds of flexible linear programming
models, depending on their methodology. In continuation of their study, we analyze a Solid
Transportation (ST) challenge using adjustable constraints and triangular fuzzy cost
coefficients.

We provide an overview of the studies conducted related to the topic of this study (see in
Tablel).
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Table 1 A review of studies conducted in the last 10 years on solid transport problems under certainty
conditions based on goal programming and multi-parameter models.

Author(s) Year Description
Yu et al. [10] 2015 An interactive approach is developedn to solve the multi-objective transportation
problem with interval parameters.
. This paper provides a state-of-the-art review on the use of goal programming in
Colapinto et al. S . . . . .
(1] 2015 multi-criteria decision analysis across engineering, management, and social
sciences.
Dalman [12] 2016 The paper presents an qncertam programming rnpdel for a multi-item solid
transportation problem with uncertain parameters.
Das et al.[13] 2017 A profit-maximizing solid transportatlon model under a rough interval
approach is proposed.
Ahmad & Adhami 2018 This paper proposes a neutrosophic programming approach to solve a multi-
[14] objective nonlinear transportation problem with fuzzy parameters.
The paper presents a goal programming optimization model to improve disaster
Chong etal. [15] 2019 management and distribution of humanitarian aid under uncertainty.
This paper proposes a mathematical model for a green solid transportation
Das.K et al. [16] 2020 system with dwell time under carbon tax, cap, and offset policy, using type-2
fuzzy logic to handle supply and demand uncertainties.
Bakhtavar et al. This paper presents a multi-objective goal programming model to assess
2020 . o
[17] renewable energy-based strategies for net-zero energy communities.
. . This paper develops a goal-programming-based multi-objective optimization
Hussain & Kim Sy . Y .
[18] 2020 model for off-grid microgrids to minimize energy storage degradation and
load/renewable curtailment.
A two-phase planning approach combining centralized and decentralized
Haque et al. [19] 2021 decision-making processes is proposed for modeling a multi-echelon, multi-
period, decentralized supply chain.
This paper presents a multi-objective programming model to optimize
Gupta et al. [20] 2021 transportation and inventory costs in a supply chain network under uncertainty.
. This paper proposes a multi-objective fuzzy robust programming model to
Mamashli & - . .. .
. 2021 design a sustainable municipal solid waste management network under
Javadian [21] X
uncertainty.
This paper presents a bi-criteria optimization approach using fuzzy goal
Jana et al. [22] 2022 programming to minimize life cycle energy consumption and CO2 emissions in
a biofuel supply chain under uncertainty.
This paper proposes a solution approach for a sustainable multi-objective multi-
Bind et al. [23] 2023 item 4D solid transportation problem involving triangular intuitionistic fuzzy
parameters.
This paper presents a bi-objective fixed-charge solid transportation problem
Kaspar & L . . . )
. 2024 that minimizes total transportation cost and time under uncertainty using
Kaliyaperumal [24] )
neutrosophic sets.
This paper proposes improved mathematical models for a multi-objective cold
Vinotha [25] 2025 fuzzy solid transportation problem with an extra power source to support

freezing during vehicle engine shutdown.
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For this purpose, we utilize a multi-parametric approach and goal programming according
to the membership function designed to solve the Solid Transportation problem with Flexible
Constraints. The best solutions of the goal programming and the suggested model are then
contrasted. We also provide for both suggested scenarios, as well as an algorithm, fuzzy
flexibility and a parametric approach, we attain the most degree of satisfaction. This paper has
been divided into five parts. Section 2 provides some basic ideas as lemmas and theorems as
our major instruments to prepare the research to incorporate the models and approaches.
Proposed methods and an algorithm are presented in Section 3. We employ an illustrative
example of the algorithm in Section 4. Finally, Section 5 is focused on the study's conclusion.

2 Fuzzy Solid transport issue with flexible circumstances

The solid transportation problem is one of the several forms of transportation models and is a
generalization of conventional transportation. Basically, in the solid transportation model, it is
assumed that each supplier has a supply capacity of s,, i =1,2,...,m, customers have a demand

of dj, j=12,...n, and k vehicles have a capacity of ¢,, 1<k <K, and o the cost of
shipping a goods unit from supplier i to customer j responds with the decision variable x , .

Among realistic transportation models, which seek to reduce the transportation cost, are solid
Transportation problems with fuzzy restrictions and fuzzy costs. Vehicle & —4 moves the item
from m suppliers to 7 clients. Goods from their source of supply to the capacity vehicle transfer
items. Demand is now focused online since the COVID-19 pandemic has altered supply. As a
result, the terms supply, demand, and transportation no longer have a rigid definition. A suitable
framework for the mathematical model in this situation should be created that reflects the actual
circumstances of the problem. The subsequent model considers all limitations to be fuzzy
flexible data, and uses the symbols < for "lower than or equal to" and 2, for "upper than or

equal to". The mathematical model is displayed below:

Model I:
m n K
Minz Zél.jkxijk (1)
i=l j=1 k=1
n K
st Y Y x, Ss,, Vi 2)
j=1 k=1
m K
22X Rd; )
i=l k=1
D> xy Se, Yk )
i=l j=l
X 20, i=12,..,m, j=12,.,n, k=12,.,K. 5)

For Equation (3), the fuzzy membership function is:
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19 X de
d, —x ;
H(x)=q1-— , d;<x<d;+q,; - (6)
J
03 X Zdj +qj

For equations (2) and (4), Nasseri et al. [26] introduced the fuzzy constraint of membership
function as:

I, x<s,
u(x)= l—x_si, s, <x<p+s;. (7
0, XZp, +s;

Given the absence of a precise description for conditions (2), (3), and (4), the equivalent
model is built to solve this model using a parametric approach.
Let that the tolerance of thei —th constraint of supply is p;. main of tolerance p, and its

n_ K n_ K
flexibility in its range, we possess szijk Ss,, i=12,..,m and szijk <s, +0p,,
j=l k=1 J=1 k=l
which @ €[0,1]. The tolerance of the j —#h constraint of demand is ¢, . Based on tolerance ¢,
and its flexibility in its range, we give:
m K m_ K
Zinjk 2d; and Zinjk >d, -0q;, j=12,.,n,
i=l k=l i=l k=1
and the tolerance of the k —th constraint of vehicle is r, . Main of tolerance r, and its flexibility
in its range, we have:

iixyk Se, ,andiixﬁk <e +0r,, k=12,.,K.

i=1 j=1 i=l j=l
The following lemmas can be useful for our discussion.

m K m K
Lemma 1. The constraint » > x  >d is equivalent to the constraint > > x, >d, —6q,,
i=1 k=1 i=1 k=1
for 0 € [0,1].
m_ K
Proof. Each feasible solution x ,, which is satisfied in > »'x , >4 isindeed a fuzzy set with
i=l k=l
the following membership function:
1, (<d,
d —t,
plth=1-——L, 4, <t,<d +q,, (8)
9,
0, t,2d,+q,
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m_ K
where 1, => > 'x_ , j=1..n.

i=l k=1

We called this feasible solution as f —feasible solution of this constraint.
Now, we will consider the three following cases:

m K
A) If ZZX ik -d ; £0, then the j —th Constraint is held and equal to 1.

i=l k=1

m K
B) If 0< ZZX ik —-d ; =4, then the membership function is monotonically increasing
i=l k=1

for j —th Constraint. The degree (level) of satisfaction j —th constraint is decreasing.

m K
O If Z ZX ik —d i 29 , the tolerance accepted range is larger than the value which is
i=l k=l

determined by the decision-maker, Thus, the j —th Constraint has been completely
violated, and its membership function is equal to 0.

Hence, because the membership function is continuous, the right-hand sides of the flexible
constraint form d; to d; —q; base on the continuous value for 6, from #=0 to =1 can be
achieved. Therefore, the fuzzy flexible relation can be shown by the following equivalent
parametric form, d,(0) =d ; —0q , where 0 € [0,1].

Lemma 2. Problem [ is equivalent to the following multi-parametric linear programming
problem:

Model II:
m n K
Minz Z~ijkxijk 9
i=l j=1 k=l
n K
s.t. Zinjk <s; +(l-a)p,, i=12,.,m, (10)
j=l k=l
m K
;;xiﬂ( >d, -(1-8,)q,, j=12,..n, (11)
injk <e, +(I-y )., k=L2,..K, (12)

X, 20, i=12,..m, j=12,..,n, k=12,..K, 0<a,B,6§<I. (13)

Proof. To establish the claim, it suffices to show that equations (2), (3), and (4) are respectively
equivalent to (10), (11), and (12). Since the procedure is analogous in all three cases, we will
focus solely on the second one and leave the remaining cases to the reader. The conclusion
follows directly from Lemma 1.

Thus, the main problem can now be reformulated in the following equivalent form:
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Xy 20, i=12m, j=12.,n, k=12,,K, 0<a,py<I

where the set of all feasible solutions of the problem is defined as follows.

Definition 1. Suppose a= (ala'--aam 7ﬂ17"-:ﬂn971:~..97/k ) € [Opl]m+n+k and

m

n K m K n
szykSSi+(1—ai)PwZnykZdj—(l—ﬂj)%’ szvks

Xa = xijk S R Jj=1 k=1 i=1 k=1 i=1 j=l

47

(14)

(15)
(16)

e, +(=y)n

X 20, i=120m, j=12..n, k=12,.,K, 0<a,B,6<I.

So that X = (x,)e X,, x; €R isan a — -y feasible solution for Modell IIL.

ik

3 Transforming model from a flexible fuzzy model into an exact multi-parametric model

Consider the problem with supply constraints in the flexible range of [S S T D; ] , demand

constraints in the flexible range of [d 74, ,d j ] and the constraint of vehicle's capacity in the

range of [ek,ek +Vk]. By utilizing the membership function for cost coefficients, we can

transform the problem into a Multi-Parametric Solid Transportation (MPST) problem. We
assume that the cost coefficients of the objective function are represented as triangular fuzzy
numbers. Due to the fuzzy nature of these coefficients, solving the problem directly is not
feasible. Therefore, we propose converting it into a crisp objective function using methods like

Yager's approach, as referenced in [27]:

Model 1V:

Mlnzz

i=l j=l

ER(gg‘jk )x ik

m n K
k=l

s.t. X S8, +(-a)p,, 1=12,...m,

n
j=

DM~ TP

(17)

(18)

(19)

(20)

1)
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where 9(¢,, ) corresponding crisp value of the cost coefficient is determined using a linear

ranking function. By solving this problem, we obtain the optimal values for the decision
variables as well as the optimal value of the objective function.

3.1 Two-Step of Multi-Parametric Method

In this section, we introduce a new method for solving the flexible fuzzy solid transportation
problem by employing a multi-parametric approach. After solving Problem IV, we obtain the

optimal solution as (x *,«", 8", ") for the decision variables and the corresponding value of the

objective function Z *. To further maximize the degree of satisfaction, we proceed to solve the
following problem.

The multi-parametric linear programming problem is formulated as Model V:

Model V:
m n K
Max Zal. +Z,Bj +Z7k (22)
i=0 =l k=1
m n K .
s.t. Zzzci/kxijk <z +(l-ay)p, (23)
i=l j=l k=l
n K
D> xu<si+(-a)p,, i=12,.,m, (24)
j=l k=l
m K
szijk Zdj_(l_ﬂj)qja j:1’27---an, (25)
i=1 k=l
DI xp<e, +U-yr, k=12..K, (26)
i=l j=I
xiijO, i=L2,..m, j=12,..n, k=1,2,..,K, 0<a,p,y<I, 27
a <e;<1, f/<f <1, y <y <L (28)

Solving the second step yields the best solution X ", with an objective function value as

z"™, and also the degree of efficiency as (a™,8™,7"") the second phase produces the highest

degree of satisfaction. The following algorithm is given to solve the major transportation
problem.

Algorithm (STPFFC Solver):

Assumption: Consider the Solid Transportation Problem with Fuzzy Flexible Constraints
(STPFFC), in which the model incorporates a set of parameters: s,.d,.e,.p,.q, .7, -

Step 1: A linear ranking function is employed to defuzzify the cost coefficients, thereby
obtaining their corresponding crisp values, as demonstrated below:
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m nk

Min ¢, X 3 Which is equivalent to M mR( ) M lnz

)
i=l j=1 k=l

ik

n

i=l j=1

SR
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Step 2: The problem is reformulated into a multi-parametric framework. By solving Model IV,

one obtains the optimal values of the satisfaction parameters as «,

corresponding optimal value of the objective function Z ", and x°

optimal feasible solution.

;, Vi the

the associated

Step 3: Model V is solved using the corresponding results from Model IV, incorporating the
values of the satisfaction parameters denoted by «;, 87,7, as determined by an expert

decision maker in the first phase, based on their maximum degree of satisfaction. This

process yields the optimal solution X~ and the corresponding optimal value of the

objective function.

In the following section, a numerical example is presented to illustrate the proposed
approach. All models are solved using LINGO optimization software.

4 Numerical examples

Consider the parameters of the Solid Transportation (ST) problem as follows:

I : Index of supplies (suppliers; i =1,2,3).
j : Index of demands (customers; j=1,2,3).
k : Capacity of vehicles (k =1,2,3).

¥ . Unit transportation cost of shipping of product from source i to customer ; by using

vehicle k£ (i=1,2,3, j=1,2,3, K=1,2,3).

Uk : Decision variable representing the number of units transported from source i to customer

j by using vehicle k£ (i=1,2,3, j=1,2,3, K=1,2,3).

z : Total transportation cost, i.e., the objective function to be minimized.

Table 2 Demand and transportation data

K=1 K=2

K=3

i\j|3 2 1 3 2 1

2

1

1 (2,34)  (3,6,9) (8,9,10) (6,7,8) (8,9,10)  (10,12,14) (5,7.9)  (5,7.9)

2 5.,6,7)  (79,11) (4,5,6) (6,8,10) (8,11,14)  (5,6,7)

3 (1,1,1)  (1,2,3) (1,2,3) (8,9,10) (6,7,8) (1,2,3)
10 5

(5,6,7) (1,3,5)

(1,3,5) (6,7,8)

6

(7.9,11)
3,5,7)

(1,1,1)

8

9

5

3 3 3 3 3 3
ZZka >17, Zinzk >8, ZZx”k >6

i=l k=1 i=l k=1 i=l k=1

Based on the available fuzzy data, we have the valuable issue of the transportation model with

fuzzy costs and flexible constraints. This issue will be solved through the algorithm:
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Min

Z =9x,,+8x 5, +3.5x 5, +12x 1, +9%x 0y + Tx 103 + 9%, 3+ 7 103 + 7% 33 + 5% 5, + 9% ,,, +6X 55, +6x,, +

11255, 4805 + 5215 4 3X55 +0Xy35 + 25, + 20055, + X553 + 25, + T +9X95 + X35 + Ty +3X53,
SEX Xy + X3 X F X X X5 Xy X5 S8

X1 Xgp Xy X5 F Xy + Xgy X5+ Xy + X555 S

Xgpp Xy + Xag X5, + X + Xygy + X505+ Xp5 X355 S5

Xy Xop Xy F X Xy Xy X5+ Xy + Xy, 2T

Xjip X0 F X505 F Xy Xy + Xy + X35 + X5, + X35, 28

X1 X0 X505 Xy F X Xp3 4 Xy33 X555+ X335 26

Xy Xop Xy Xy Xy Xayy Xy Xy, Xy, S10

X10 Xy T X515 F Xy  Xgpp + Xapy + Xy3y + Xogy + X35 S5

X1 F X0 F X35 Xy F Xy + X35 + X33+ X533+ X355, S 6

x5 20, =123, j=1,23, k=123, 0<qa, <1, 0<f,<1, 0<y, <L

Step 1: In the process of solving of the above problem, we use the Yager’s ranking function to
obtain the associate crisp values of fuzzy numbers. Also, we use the suggested process in
section 3 to make the following multi-parametric linear programing.

Min

z =9x,,, +8x 5, +3.5x 5, +12x 1, +9x 1 +Tx 103 + 9% 5+ Tx 5y +7X 5 +5x,,, +9x,,, +6x 5 + 06X, +
11,0 4855 +5Xy,5 +3X53 + 0Xy35 + 2005 + 20X, + X35 + 20X, + Ty, + 99X + X35 + 70555 + 3055
S.L.

Xy Xy X5 F X Xy X5 X5+ Xy + X3 S8+ 3(1-a)

Xopp F Xpy + X3y X0+ Xy + Xy + X5 + X5 + X3, <9+ 4(1- 1)

Xgpp F Xygp + Xygp + Xy + Xppp + X535 + X305+ Xy + X355 <5+ 2(1-ay)

Xy Xopy Xy Xy F Xy F Xppy + X3y X5, + 255, 2 7-3(1- )

Xj1p X5 X305 + Xy + Xogy + Xy + X35 + X35 + X35, 28-3(1-f3,)

X13+ X3 Xyp5 X5+ Xy Xy X35 + X33 + 233, 26— 2(1 - ;)

X1+ Xy X5y Xy X F Xy + Xy Xy + X5, <10+4(1-7,)

X2 Xy Xy + Xy + Xy + Xy + X35 + X35 + X35, S5+2(1-7,)

Xp13 F Xp03 + Xyp3 Xy X5 + Xy + X35 + X35 + X335, <6+ 2(1-73)

X 20, =123, j=123, k=123, o <a<1, B <pB <1, 7, <y <L

Step 2: Use Lingo software to solve the above problem based on the various values of «, 3, 7.
The following table has the results.
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Table 3 The optimal values of the objective function based on different values of &, ﬂ V.

o, By 0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
V4 25.5 29.55 33.6 37.65 41.7 45.75 49.8 54.3 59.2 64.1 73
Note that for

o, =05, a,=05, a;=0.5 B =05 p, =05 B =05 7 =05 y,=0.5,7 =0.5.

We have the objective function z, =45.75.

Step 3: The goal multiparametric linear programming problem is presented as follows:
Min D =d; —d +d, —-d,

St.

0%y, +8x 1y, +3.5x 5 F12x 1, +9% gy +7X 3 9% 13 + 70 g3 +7x 55 + 5%, +9x,,, +6x 53, +6x,, +11x ), +8x ),
50 513+ 3X 05 FOX 33 + 2005+ 2X 45+ X 55 F2X 5+ TX 4y +9X 30y +X 5+ TN s +3X 4, +d | —d| =42.75
ata,tag+ PPyt Sty tr, s +d£_d2+ =9

Xy FX o T X5 Xy F X FX 5 + X5+ X5y + X5, S8+ 3(1- )

X o FX gy FX g3 FX 00 FX 500 FX g3y +X 3 FX 5+ X 5, <9+ 4(1-ay)

X X F X5 F X3, X FX 35 X055+ X 353 + X35, S5+2(1- )

Xy FX g F Xy X g FX g F X3y X3y + X5 +X 55, 27-3(1- )

X FX 50 X300 FX 19 FX 09 FX 35 FX 15y FX 555 +X 53, 28-3(1= f3,)

X3 Xy T X33 FX s F X g0y FX 353 +X 153+ X 55 +X 35, 26 -2(1- ;)

Xy FX g F X3y X FX g FX g FX 5+ X gy + X4y, S10+4(1- 7))

X1 X0 F X500 FX 1 FX 5 X350 FX 15y +X 5 +X 53, S5+ 2(1-7,)

X3 Xy T X33 FX g F X gy FX 393 FX 33+ X 53 +X 33, SO+ 2(1-73)

X 20, 1=123, j=123, k=123, a;<ai£1, ,B;</31,S1, ;/Z<)/k£1

The optimal values are those derived from solution of the model:
d- =0, df =182.75, d; =3,and d; =0 as deviations.

The optimal solution of the objective function is equal to:
z =228.5-182.75=45.75,
with o, =0.5, a, =05, a;=1, B =1, B,=1, B;=05, ,=05, y,=0.5, y,=0.5.

According to the results in Table 4.2, raising each parameter from zero to one leads to an
increase in the objective function's value, as the function itself decreases. This confirms the
accuracy of the tested outputs. These findings underscore the robustness and adaptability of the
proposed model in addressing transportation problems characterized by data uncertainty and
constraint flexibility. Furthermore, the model’s capacity to explicitly capture the sensitivity of
the optimal solution to parameter variations enhances its practical relevance, particularly for
real-world decision-making scenarios in which ambiguity and tolerance in constraints are
inevitable.
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5 Conclusion and Future works

In this study, an advanced extension of the solid transportation model presented by
incorporating fuzzy cost parameters and flexible fuzzy constraints related to supply, demand,
and vehicle capacity. The approach addresses the uncertainties often encountered in real
transportation systems by modeling supply as a flexible lower bound, demand as a flexible
upper bound, and transportation capacity as a variable constraint. To transform the fuzzy
environment into a solvable form, membership functions were applied, and the model was
converted into a deterministic equivalent. A combined method based on goal programming and
a multi-parametric strategy was then employed to derive the most satisfactory solution,
considering the trade-offs between conflicting goals. The proposed methodology, which
integrates goal programming with multi-parametric models, addresses the solid transportation
problem under certainty conditions while incorporating fuzzy flexible constraints. The results,
as reported in the corresponding tables, reveal that the application of fuzzy flexible constraints
ensures that an increase in the degree of desirability does not adversely affect the objective
function value. This finding affirms the appropriateness of the proposed method. Furthermore,
the outcomes indicate that the developed hybrid model distinguishes itself from existing
approaches to the solid transportation problem by incorporating conditions and assumptions
that more accurately reflect real-world circumstances, while demonstrating superior
performance relative to several established models. Finally, the effectiveness of the proposed
model was validated through a numerical example, confirming its suitability for complex and
uncertain decision-making scenarios in transportation logistics. In future research, interval
constraints can also be used. Moreover, the objective function in Model IV can be replaced by
an equivalent multi-objective problem, and then, in the next process, by using a well-known
approach for solving the multi-objective problems, a weighted method can be used. Also,
extending the model to multi-stage systems and considering stochastic demand scenarios are
among the issues that future research could explore.

Acknowledgment: The authors sincerely thank the reviewers for their constructive guidance,
which improved the quality of the article.
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