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Abstract Finding the most efficient decision-making unit (DMU) in Data Envelopment Analysis (DEA)
can provide deeper insights into the performance of efficient units. Over the years, several methods have
been proposed to improve the ability of DEA models to distinguish between DMU s, often by aiming for
stronger ranking capabilities. In this study, we present an enhanced model based on mixed-integer linear
programming (MILP) to identify the most efficient DMU. The model is designed so that only one DMU
can achieve an efficiency score equal to one, while all others receive scores strictly less than one. This
structure enhances the model’s ability to fully rank all units, while using fewer constraints compared to
traditional full-ranking models. To demonstrate its effectiveness and compare it with two well-known
models, the proposed model is applied to two real-world examples from the literature. These findings
show that proposed model clearly outperforms of the reviewed models—not just in theory, but in
practice too.

Keyword: Data Envelopment Analysis, Most Efficient DMU, Mixed Integer Linear Programming,
Ranking.

1 Introduction

Data envelopment analysis (DEA) is a mathematical approach introduced by Charnes et al. [1]
to assess the relative efficiency of a homogeneous group of decision-making units (DMUs).
DEA successfully divides DMUs into two categories; efficient DMUs and inefficient DMUs.
It is not possible to rank efficient units based on their efficiency score, one. Therefore, many
models have been examined in the DEA literature to rank these units. Each of these methods
ranks efficient units from different perspectives. Among these methods, we can mention cross
efficiency ranking methods [2-12], super efficiency ranking methods [11], the common set of
weights (CWS) methods[13-21], benchmark ranking methods [22], the linear discriminant
analysis [23], discriminant analysis of ratios [24, 25].
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In some cases, the decision-maker must select only one DMU among efficient DMUs
which is called the most efficient DMU. Therefore, several studies have been done to find the
most efficient unit in DEA. To evaluate the most efficient DMU in advanced manufacturing
technology (AMT), Karsak and Ahiska [12] proposed an integrated multi-criteria decision-
making (MCDM) DEA model. For overcoming the convergence of the proposed model in [12],
Amin et al. [26] modified and improved it. Amin and Toloo [27] proposed a new mixed integer
linear programming (MILP) model based upon CSW to find the most efficient unit. For
selecting the most BCC-efficient DMU, Toloo and Nalchigar [28] extended this model into
variable returns to scale (VRS) situation. Amin et al. [26], Amin [29] introduced a new mixed
integer non-linear programming (MINLP) model for overcoming some drawbacks of previous
MILP models. Although their models can determine the most efficient unit, they are non-linear
and therefore difficult to solve.

Toloo et al. [30] revealed that the problem of finding the most association rule by
considering multiple criteria in data mining is an important task and designed an algorithm for
prioritizing association rules. This algorithm has some drawbacks that is mentioned and
improved by Toloo and Nalchigar [31]. By maximizing the minimum possible distance between
a selected unit and the next ranked unit, Foroughi [32] proposed a new MILP model to find the
most efficient unit. This approach can also be extended to rank all extreme efficient DMUs. By
removing additional constraints in Foroughi's model, Wang and Jiang [33] proposed a new
model to identify the most efficient DMU, which is less complex than Foroughi's model. Toloo
[34] proposed a new MILP model for selecting the most efficient DMU without explicit input
and utilized this model to determine the best efficient professional tennis player.

Toloo [35] excluded the non-Archimedean epsilon and proposed a new model with fewer
computations to find the most efficient DMU. Toloo [36] showed that in the supply chain, the
selecting and full-ranking of suppliers with imprecise data is a very important issue. Using the
CSW method, Toloo [37] introduced a new minimax MILP model for selecting the most
efficient DMU. Lam [38] introduced a new MILP model similar to that of the super-efficiency
model for directly discovering the most efficient DMU.

Salahi and Toloo [39] illustrated that Lam’s model may be infeasible, and they proposed a
modified model to cope with this issue. Toloo [40] proposed a method for finding the most
cost-efficient DMU by utilizing the proposed approach in [41] when the prices are fixed and
known. Toloo and Salahi [42] developed a new two-step MINP model involving the epsilon
which identifies a single efficient DMU whose efficiency score is strictly greater than one. Both
non-linear models can be turned into linear models. Based on the proposed model in [42],
Ozsoy, Orkcii [43] proposed a mixed integer programming model without epsilon with one step
for selecting the most efficient unit. This model, with fewer constraints than the model in [42],
determines exactly one DMU as the most efficient, with an efficiency score greater than one,
while the other DMUs have efficiency scores strictly below one.

Ebrahimi et al. [44] analyzed the two-step method proposed by [38, 39] to identify the most
efficient units. They mathematically proved that the first-step model in [39] is sufficient to
determine the best DMU, rendering the second step redundant. They improved the first-step
model by proposing a modified version, demonstrating that it could identify the best DMU with
considerably lower computational effort.

Noori et al. [45] explored the link between the most efficient and extremely efficient units.
Their findings showed that an extremely efficient unit can also be considered the most efficient,
and the reverse holds true as well. This implies that the defining properties of extremely
efficient units are essentially the same as those of the most efficient units.
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The major contribution of this study is the development of a single-step MILP model that
effectively identifies the most efficient DMU in DEA. Unlike existing models, the proposed
approach guarantees that only one DMU attains an efficiency score of one, while all others
receive strictly lower scores. This formulation enhances the model’s discriminatory power,
simplifies its structure, and reduces the number of constraints leading to better computational
efficiency. A comparative analysis with two famous models, using benchmark DEA case
studies, highlights the superior performance of the proposed method.

The rest of the paper is structured as follows. Section 2 gives a brief overview of two well-
known models for identifying the most efficient DMU. In Section 3, we introduce our proposed
MILP model and explain how it works. Section 4 presents two numerical examples to illustrate
how the model can be applied in practice and to highlight its effectiveness. Finally, Section 5
wraps up the paper with concluding remarks and suggestions for future research.

2 Preliminaries

Suppose there are n DMUs to be evaluated, DMU ;(j =1,2,..,n), each using m inputs to
produce s outputs. Let x i (0 =1,2,...,m)and v, (r=12,..,s) represent the input and output
values of DMU ,,

DMU ,, can be calculated as [46]:

respectively. Mathematically, the efficiency score of a specific DMU,

S
21,
_ r=1
- m
Z ViXip
i=1

ep

,j=L2,...,n.

Where v, (i =1,2,....,m)and u, (r =1,2,...,5 ) be the weights of i #h input and r th output,
respectively.

Sueyoshi [22] proposed the following linear programming model for obtaining optimal

weights and estimating the best relative efficiency score of DMU , , under constant returns to

scale (CRS):

e; =Max Zym
r=1
st. Zury,j —Zvixij <0,j=12,..,n,
r=I1 i=1
Zl:vl.xip =1, 1)
) 1
u, = o =12,..s,
(m +s)max{y ;}
; .
1

v, > )1
(m +s)max{x, }
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Letv, and u, be the optimal weights of ith input and 7#1 output in model (1), respectively.
The DMU , is efficient if and only if (e, =1 and iu:yw —iv:xip =0), otherwise it is
inefficient. - .
Definition 1 Let (ur (r=12,..,5),v.(i = 1,2,...,m)) >0 be optimal solution of model (1), such
that iu:y,p —iv:xip =0 and moreover iu:yq. —iv:xij <0,/ # p ,then DMU , is called
P = ] =

the most (best) efficient unit [37].
Theorem 1 Any extremely efficient DMU is a candidate for being the most efficient.
Proof see [45].

Remark 1 If the production possibility set (PPS) does not contain any extremely efficient
DMUs, then it does not contain any most efficient ones.

2.1 The Wang and Jiang (2012)’s model

Wang and Jiang [33] proposed the following MILP model for finding the most CCR-efficient
DMU under CRS.

Min ) v, [Z%J—Z”r [Zyijj
i=l j= i=1 j=

st iu,,y,j —ivix,.j <I;,,j=12,.,n,

=1 i=l
M, =1, (2)
j=1
u 21", r=L2,.,s,

v, 2l i =12,..,m,
I, e{0,1}, j=L2,..,n,

Where [ =((m +s)max{y, })"'and [ =((m+s)max{x,})" are lower bounds
J J ’
borrowed from model (1). Model (2) is feasible and its objective is to maximize the overall

efficiency of all of the DMUs. In this model, if / ; =1 then Zuryw —Zvixip <1, hence,
r=l1 i=1

model (2) allows efficiency value of DMU , to be larger than one and, on the other hand for

I, =0(j #p), the efficiency value of DMU ; is less than or equal to one due to constraint

Zur Y, —Zvixij <0. So, in model (2), DMU , is determined as the most efficient DMU if
r=1

i=1

and only if/, =1.
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2.2 The Ozsoy, Orkcii [43]’s model

Inspired by the Toloo and Salahi [42]’s model, Ozsoy, Orkcii [43] presented a new single-stage
MINLP model to find the most efficient DMU as follows:

h"=Max h

St.

S

Suy, v, <Ml ~h(-1,), j=12,.n,
i=l

r=1

Z;uryrj —Z:‘vixij Zh]j —M(l—Ij), j=12,...n,

gl_, =1, (3)
I, e{O,l} ,j=12,...,n,
u, >((m +s)max{y,j})’l, r=12,..s,

J

v, 2((m +S)niax{xy.})_1, i=12,..,m,
J

Where M is a large positive number. The minimum possible interval between the first two
top-ranking DMUs is [-h*, h*], where h* is strictly positive. Model (3) identifies exactly one

DMU (DMU ,,1 ; =1) as the most efficient, with an efficiency score greater than one, while
all other DMUs (DMU ,, j # p) have efficiency scores strictly less than one.

Model (3), by using the continuous variable z , =/, and adding the following
constraints, is transformed into a MILP model [42, 43].

0<z,<MI,
z;<h<z,+M(1-1,)

3 The proposed model

In this section, we propose the following model for determining the most efficient DMU:

n
Max ZSJ.
j=1
S m
s.t. Zu,‘y,j —Zv,.x,.j +5,=0, j=12,.,n,
r=1 i=1

epsd; <s, <Mo,, j=1,2,...,n, 4)

Zé' L =n—1,
5,e{01),j=12.n,
u 20", r=112,..,s,
v,2Il'i=12,.,m,
Where M is a large positive number, eps is a very small positive number and
0,(j =1,2,...,n) are binary variables. We use eps to generate the full ranking and to identify

the most efficient DMU according to Definition 1.
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Constraints u, 2/ (r =1,2,...,s)and v, 21’ (i =1,2,...,m) are borrowed from (2) and have
been extensively applied in DEA practice.
Let (u,(r =1,2,...8)v, (i =1,2,..,m),5,(j =1,2,....n))be optimal solution of model (4).

If 5 =0, then S; =0, so ZLtry,p —Zvixip = 0. This allows the efficiency of DMU , to be
r=1 i=1
one. On the other hand, if 6,* =1(j =1L2,....,n;j #p), then eps Ss; <M results in

Zur Y, —Zvixl.j < 0. This guarantees that the efficiencies of the other DMUs are less than

r=1 i=1

one. There for, DMU » is the most efficient DMU based on Definition 1.
In the following, we prove some properties of proposed model.
Theorem 2 Model (4) always has a feasible solution.
Proof If PPS includes an extremely efficient DMU, DMU , | then there exist (LZ ,VA) >0 that

satisfies (Lfyp —vx , =0,y ; —Vx, <0(j €{1,2,..,n} - {p})) . This completes the proof.

Theorem 3 The optimal objective value of model (4) is bounded.
Proof Let (u_ v,1.,5 ) be any arbitrary feasible solution to model (4). Based on the constraints

of this model, it follows that (n —1)xeps < Zs_j <(n-1)xM . This means that the objective
function of model (4), for any feasible solution, is bounded both below and above. This
concludes the proof.

4 Numerical examples

Example 1 This example is taken from [47] and in it, fourteen banks active in the Czech Republic
are evaluated in the light of 5 inputs and 4 outputs .Inputs and outputs are described below and the
data set is provided in Table 1:

Inputs: X; =number of employees, X> =number of branches, X3 =assets, X4 =equity, X5 =expenses
Qutputs: Y =deposits, Y, = loans, Y3 = non-interest income, Y4 = interest income.

Table 1 inputs and outputs of 20 banks

Bank X X2 X3 X4 X5 Y1 Y2 Y3 Y4
AIR 400 18 33600 2596 745 30696 11135 14 554
CMZRB 217 5 111706 4958 566 86967 16813 634 1700
CS 10760 658 920403 93190 18259 629622 479516 8747 32697
CSOB 7801 322 937174 73930 16087 629622 479516 8747 32697
EQB 296 13 8985 1296 601 7502 5611 19 215
ERB 72 1 33614 464 173 2940 1762 15 131
FIO 59 36 18561 726 347 17174 6465 211 536
GEMB 3346 260 135474 34486 5276 97063 101898 3943 11026
ING 293 10 128425 913 1034 92579 19216 468 5139
JTB 407 3 85087 7233 1333 62085 39330 487 3686
KB 8758 399 786836 100577 13511 579067 451547 8834 35972
LBBW 365 18 31300 2774 1138 20274 2528 128 1046
RB 2927 125 197628 18151 57112 144143 150138 2829 8563
UCB 2004 98 318909 38937 13804 195120 192046 2740 8891
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We apply the models (1), (2), (3), and (4) to the data set given in Table 1, using M =10000
and eps =0.0001. The optimal weights obtained from the proposed model are as follows:
V= 1.0326¢-05, v,=137.34, v;=0.18134,v, =0.40514,v =0.39415
u;=0.034172, u;=0.28911, u;=6.5098,u,=0.71482,
8y =0,67 =1(j #10),

Table 2 presents the results of models (1), (2), (3), and (4), respectively. The highest
efficiency scores achieved by the various models are highlighted in bold. The numbers in parentheses
alongside the efficiency scores denote the rankings of the banks. The results show that 12 out of 20
banks are efficient. Model (2) identifies Bank CS as the most efficient, while Bank JTB is
selected as the most efficient by models (3) and the proposed model. However, model (2) fails
to fully rank all DMUs, whereas models (3) and (4) successfully provide a complete ranking of
all banks. Considering the number of constraints, model (4) has a simpler structure than model
(3). In all models, ERB Bank is identified as the least efficient.

Table 2 results of models (1), (2), (3), and (4)

CCR Wang and Jiang (2012)-  Ozsoy et al. (2021)-

DMUs — Bank  nrogel (1) Model (2) Model 3) | OPosed a‘;del
1 AIR 1(1) 0.797188(11) 0.385261(12) 0.47983(12)
2 CMZRB 1(1) 1(2) 0.679386(9) 0.5685(9)
3 cs 1(1) 1.13391(1) 0.990725(2) 0.96691(2)
4 CSOB 1(1) 12) 0.974095(4) 0.96007(3)
5 EQB 1(1) 0.618833(12) 0.352771(13) 0.51618(10)
6 ERB  0.473757(14) 0.131031(14) 0.136019(14) 0.12346(14)
7 FIO 1(1) 12) 0.540581(10) 0.48195(11)
8 GEMB 1(1) 12) 0.92167(6) 0.86898(7)
9 ING 1(1) 0.943912(9) 0.874328(8) 0.60691(8)
10 JTB 1(1) 12) 1.165441(1) 1(1)

11 KB 1(1) 1(2) 0.988263(3) 0.95894(4)
12 LBBW  0.824637(13) 0.604593(13) 0.410718(11) 0.3091(13)
13 RB 1(1) 1(2) 0.917785(7) 0.87933(6)
14 UCB 1(1) 0.906461(10) 0.965502(5) 0.93381(5)

We use Spearman’s rank correlation to assess the strength of the relationship between the
rankings obtained from models (2), (3), and (4). The correlation values are reported in Table 3,
with p-values shown in parentheses below each corresponding correlation coefficient. Table 3
indicates a positive correlation between the proposed model and both models (2) and (3).

Table 3 Correlation test of ranking models in Example 1.

Spearman’s rank correlation
Proposed model Wang and Jiang (2012)- Ozsoy et al. (2021)-

Model (4) Model (2) Model (3)
Proposed model Correlation 1 0.74399 0.96044
Model (4)
p-value (0.002281) (5.08E-08)
Wang and Jiang (2012)- Correlation 1 0.76746
Model (2
odel (2) p-value (0.001354)
Ozsoy et al. (2021)-  Correlation 1
Model (3)

p-value



http://dx.doi.org/10.71885/ijorlu-2025-2-703
http://ijaor.com/article-1-703-en.html

[ Downloaded from ijaor.com on 2025-11-29 ]

[ DOI: 10.71885/ijorlu-2025-2-703 ]

76 M. Abbasi et al. / IJAOR Vol. 13, No. 2, 69-79, Spring 2025 (Serial #45)

Table 3 shows a strong correlation between model (4) and models (2) and (3). Specifically,

the Spearman’s rank correlation coefficient between model (4) and model (3) is 0.96044. These
results are statistically significant at the (a =0.05) level. The proposed model, with fewer
constraints, successfully ranks all banks in a single step.
Example2 In this example, we use real data from nineteen facility layout designs (FLDs)
studied by Ertay, Ruan [48]. Each FLD consumes two inputs, cost (x1) and adjacency score
(x2) to produce shape ratio (y1), flexibility (y2), quality (y3) and hand-carry utility (y4) as four
outputs. The data appear in columns two through seven of Table 4. In this example, we use M =100
and eps =0.001. The optimal weights obtained from the proposed model are as follows:

v,= 0.008697, v;=9.5774e-06,u; = 262.54, u,=1.947,u;=1.9701,u;=0.0049603,
5, =0,5, =1(j #10),

Since &, =1, FLD10 is identified as the most efficient FLD by model (4). The columns

eight through eleven of Table 4 presents the outcomes of models (1), (2), (3), and (4) for Example
2. The results from model (1) indicate that nine FLDs are efficient. Models (2), (3), and (4)
consistently identify FLD10 as the most efficient design. However, model (2) cannot fully
distinguish among all DMUs; for instance, FLD3 and FLD12 receive the same rank. In contrast,
models (3) and (4) are capable of ranking all DMUs effectively. It is also worth noting that
FLD13 is identified as the least efficient DMU across all models.

Table 4 Data set for 19 FLDs and efficiency of FLDs by different models Example 2.

Inputs Outputs CCR- W?Ed%lzglnd OZSOY et al. PigEZZTd
DMUs Model (2,021)
() (2,012)- -Model (3) -Model
X1 X2 yi y2 ¥ y4 Model (2) &)
FLD1 20,309.56 6,405 0.4697 0.0113 0.041 30.89 0.984592  0.964891 0.761219 0.69934
(13) ®) O] @
FLD2 20,411.22 5,393 0.438 0.0337 0.0484 3134 0.988393  0.971531 0.761527 0.64937
(12) “4) (6) (N
FLD3 20,280.28 5,294  0.4392 0.0308 0.0653 30.26 0.997428 1(2) 0.770702 0.65547
() (€)) (6)
FLD4 20,053.20 4,450 03776 0.0245 0.0638 28.03 0.949290  0.894522 0.673692 0.57007
(15) (14 (15) ©
FLDS 1999875 4370 03526 0.0856 0.0484 2543  1(1) 0925330 0751551  0.53433
© ®) (11
FLD6 20,193.68 4,393 03674 0.0717 0.0361 29.11 0.973342  0.910794 0.734339 0.5511
(14) (13) (10) (10)
FLD7  19,779.73 2,862 02854 0.0245 0.0846 2529  1(1)  0.790849  0.552031  0.43747
(17) (17) (17)
FLDS 19,831 5,473 0.4398 0.0113 0.0125 24.8 0.856831  0.868210 0.723427 0.67025
a7 (15) (13) 3
FLD9 19,608.43 5,161 0.2868 0.0674 0.0724 24.45 0.889201  0.834482 0.630595 0.44371
(16) (16) (16) (16)
FLDI10 20,038.10 6,078 0.6624 0.0856 0.0653 26.45 1(1) 1.440321 1.230623 1(1)
(M M
FLDI1 20,330.68 4,516 0.3437 0.0856 0.0638 29.46 0.998328  0.940190 0.732256 0.51268
(10) ®) an (13)
FLDI12 20,155.09 3,702 0.3526 0.0856 0.0846 28.07 1(1) 1(2) 0.766601 0.53069
(©) a2
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FLDI13 19,641.86 5,726  0.269 0.0337 0.0361 24.58 0.775852  0.675683 0.513299 0.4148

(19) (19) (19) (19)

FLD14  20,575.67 4,639 03441 0.0856 0.0638 322  1(1) 0.941034  0.723855  0.50723
0 (12) (14)

FLDI5  20,687.50 5,646 04326 0.0337 0.0452 3321  1(1) 0.951281  0.740819  0.63283
(©) © ®)

FLD16 20,779.75 5,507 03312 0.0856 0.0653 33.6 1(1) 0.913958 0.693781 0.48355
(11) (14) (15)
FLD17 19,853.38 3,912 0.2847 0.0245 0.0638 31.29 1(D) 0.769322 0.534852 0.43469

(18) (18) (18)
FLDI8 1985338 5974 0.4398 0.0337 0.0179 2512 0.851718 0.913731  0.767148  0.66979
(18) (12) 4 Q)

FLD19 20,355 17,402 0.4421 0.0856 0.0217 3002  1(1) 0923829  0.790033  0.65705
(10) @ ®)

Table 5 Correlation test of ranking models in Example 2.

Spearman’s rank correlation
Proposed model Wang and Jiang (2012)-  Ozsoy et al. (2021)-

Model (4) Model (2) Model (3)
Proposed model Correlation 1 0.57394 0.78246
Model (4
odel (4) p-value (0.010182) (7.52E-05)
Wang and Jiang (2012)- Correlation 1 0.81615
Model (2) p-value (2.03E-05)
Ozsoy et al. (2021)-  Correlation 1
Model(3) p-value

As shown in Table 5, the correlation coefficient between the proposed model and the model
by Ozsoy, Orkcii [43] is 0.78246 (7.52E-05). This result indicates that the two models are
statistically concordant at the significance level (a =0.05). Moreover, the proposed model,
with fewer constraints, successfully ranks all FLDs in a single step.

5 Conclusion

This paper presented a straightforward MILP model designed to identify the most efficient
DMU using a common set of weights. The model simplifies the evaluation process by reducing
the number of constraints while still offering strong discriminatory power. Through testing on
well-known case studies, the model proved both effective and practical. Overall, the approach
shows promise as a useful tool for efficiency analysis. Looking ahead, future research could
explore how different choices for the parameter M affect the results and how the model can be
adapted to handle negative data.
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