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Abstract In this paper an approach in data envelopment analysis dealing with evaluation of non — zero
slacks was propounded. This approach intends that weight of inefficient and weak efficient points that
have been evaluated as zero weight, be considered as positive weight, and also in this approach, the
pareto efficiency evaluates the picture of this point. In this approach positive weights in the inefficient
and weak efficient points are appointed based on the decision maker’s opinions and wants, and
weights with help of analytical hierarchy process (AHP) are calculated and added to the model under
studying, and gain a model with actions of weighted border.
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1 Introduction

The CCR model, introduced by Charnes et al. [1] is appointed as the beginning point of a new
discussion in the realm of data envelopment analysis. Many opinions and views about control
weights have been presented which are backgrounds for discussion about the aforesaid paper.

In most cases in practice, the DEA models assess the efficiency of the inefficient units by
using reference points on the frontier of the production possibility set (PPS) that are not
Pareto-efficient.

This happens as a result of the fact that these models usually yield zero weights for the
optimal multipliers, or equivalently (by duality), strictly positive values for the optimal slacks,
which means that the efficiency scores obtained for these units do not account for all sources
of inefficiency. Bessent et al. [2] deal with the so-called ‘‘not naturally enveloped inefficient
units”, which are defined as those that have a mix of inputs and/or outputs, different from that
of any other point on the efficient frontier. The authors report the results corresponding to
several studies that reveal the high frequency of the not naturally enveloped inefficiency units
in practice.

These units are actually those in F\Y NF according to the classification of the decision
making units (DMUs) in Charnes et al. [3] (the DMUs in F are on the weak efficient frontier
whereas those in NF are projected onto points in F). Much attention in the literature has been
paid to this type of DMUs where we can find a wide variety of approaches intended to
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provide efficiency scores for them trying to avoid the problems with the non-zero slacks. An
approach that is propounded uses the model of analytical hierarchy process and Assurance
Region.

2 Background
2.1 Evaluation of weights in the analytical hierarchy process

In the analytical hierarchy process, first, elements are compared in the form of pair and paired
comparison matrix, then formed by use of this matrix to calculate the relative weights of
elements to tally a paired comparison matrix shown in the following form in which a;; is the
preference of element 1 to element j. Now with the determination of a;, we want to gain
weights w; of elements

A=la, ], Lj=12,.,n

Each paired comparison matrix may be consistent (a; = Wi ) or inconsistent (a; # &)
J J

in the state that the matrix is consistent, and calculating weight w,is simple and gained from
normalization of the elements of each column.

But in the state that matrixes are inconsistent, four main approaches will be presented for
calculation:
1 Least squares method.
2 Logarithmic least squares method.
3 Eigenvector methods.
4 Approximation methods.

Now we explain one of the above methods that we have used for achieving weights in the
presented method.

In this method w; is a determinant in a way that the following relationship is true.

a,w, +a,w, +..+a, w, =2iw,

Ay W, + Ay, W, +...+a, w, =1.w,

a,w, +a, w,+..+a,w, =1w,

That here a;; is a preference of i-th element to j-th, and w; is a weight of i-th element ,and
A is a constant number, this method is one kind of mean that Harker [4] calls it as possible
mean in a different way. Because in this way the weight of i-th element (w;) according to the
above definition is equal to:

1 & .
w, =12a!7w_/ i=12,..,n
j=1

we can write the above simultaneous equations as follows:
AxW =AW
In which A is a paired comparison matrix {mean4 = [ay } }, and W is a weight vector,

and A is a scalar (number). According to the definition, this relationship is among one matrix
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(A), vector (W) and (A) number, it has been said that W is a special vector and A is a special
amount.

Example: if the paired comparison matrix be as follows, we can calculate the weight of
criterion by using the model of special vector.

v s )
3

A=|3 1
2%1

Solution: 4 = (A — AI) we form the zero matrix.

1- 4 % %
det(d —Al)=| 3 1-2 3 =(1—/1)3—3(1—/1)+%=0

2 %1—/1

is calculated A_, =3.0536 After the solution of the above third degree equation. w, is
calculated as: (4 - 4, )W =0 Now we form the equation

20536 Y JA w,
3

3 —2.0536 <|w, =0
| _ W
2 A 2.0536 ;

Here we should add the equation w, + w, + w, =1to the above system and calculate
W' =(0.1571,0.5936,0.2493) the final respond as w,

Theorem 1. For a positive and inverse matrix like the paired comparison matrix, we can
achieve the special vector from the following relation:

A" e
T k

e A" e

W =Ilim k > o

first we calculate A*.e (so that for k=1) e’ = 11,...,»Hinit
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a, ap a,, 1 =1
n
1
Ar o= ay Ay Gon | | M| 2 2 i
J=1
a a o a 1 n ’
nl n2 nn
zanj

Now we calculate the result of the expression e'.A*.e

e'de=e'(4"e)=[1 1

I
I
[

k

in which the following is formed from: matrix A is in the power of K. Then, we plus

e . A" e
the rows with each other until we achieve the column vector, and finally we normalize the
result vector.

The prominent K (matrix power A) raise the power of matrix A(k—o0) the amount of W
is near and nearer to the limit amount. So the difference of A*!, A* matrix is very trivial, and
we stop the calculation by giving one example to make the subject clearer.

Example. If the paired comparison matrix for 4 elements be as follows, by using the above

theorem, we calculate the weight of element:
1 1 /]

Lo s )

) 9 1 3 2
- 1 1
R

4 Vo2

A'e )

T 1
e A .e

After achieving W' = , we should follow the next steps.

First repeat:
The first repetition is to calculate the plus of the number of each A matrix row (until we
achieve the column vector) so that we normalize the column vector that we have achieved.
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1.695 0.05837
15 normalize Wl _ 051675
4.833 ~10.16651
7.50 0.25837
A.e
) 2 _
relation W™~ = 7 Ao from the W*.

Second repeat:
In second repeat we achieve

4 04583 1.5 0.8889
35 4 13 7.75
11 1.25 4 2.4167
185 2.1111 6.8333 4
where W 2 = (0.05867, 0.51196, 0.15994, 0.26943) . So we will have:
w?,w* w?. Now without entering to the details of necessary calculation

we show its final amount in the following:
W?* =(0.05882, 0.51259, 0.15958, 0.26943) Third repeat:

W* =(0.05882, 0.51261, 0.15971, 0.26886) Forth repeat:
W* =(0.05882, 0.51261, 0.15971, 0.26886) Fifth repeat:

As we see by raising the amount k to the fifth repeat, the amount of W will be nearer to
the constant amount (until five number after decimal ) and continuing the calculation in this
idea is not important [5].

2.2 Goal programming

Consider the following problem:
Max (fl (X)afz (X)a---afk (X)) 1
s.t. x e X. ()

where f,, f,,... f, are objective functions and X is a non-empty feasible region. The model (1)

is called multiple-objective programming (MOP).Goal programming is now an important area
of multiple-criteria (or objective) optimization. The idea of goal programming is to establish a
goal level of achievement for each criterion. GP is ideal for criteria with respect to which
target values of achievement are of significance. In goal programming method it is required
that the decision maker sets goals for each objective that he/she wishes to attain. A preferred
solution is then defined as the one which minimizes the objective from the set goals. Thus a
simple GP formulation is as follows:
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Min  (h,(n,p),h, (n,p).....h, (n,p))

s.t. fi(x)tn;-p;=b,,
xeX, 2)
np,=0, 1=1,2,..k,
n,p, 20, i=1,2,...k

where b, (i = 1,2,..., k) is the specified goals by the decision maker for the objective, n,
and p,is respectively, the under-achievement and over-achievement of the i-th goals.
h,(n,p)(j=12,..1)is linear function of the deviation variables called the achievement

function. For each function of f, (i =1,2,..., k) consider one of the following restrictions:

f.(x)=b,, (D
f(x)<b, (I
f(x)>=b, () (3)

Imposing one of the above restrictions to (1) (only one of these inequality is added to the
problems), may result in infeasibility to the problem (1).To avoid this difficulty, the deviation
variables of n, and p, are added to (3). Hence, we will have:

fi(x)+n,—p,=b, i=12,.,k
Consider the relationship between the original goal form (i.e.,<,>.or =) and the deviation
variables. It should be clear that
1 To satisty f,(x) < b,, we must minimize the positive deviation p,
2 To satisty f,(x) > b,, we must minimize the negative deviation »,

3 To satisfy f,(x) = b,, we must minimize bothn, and p,

2.3 Weight restrictions

Exists in two ways:
1 Cone Ratio
2 Assurance Region

Here we discuss Assurance Region in two kinds of weight bounds for s and V's ( pis a
weight of output) and (V is a weight of input) that we name them homogeneous and non-
homogeneous.
1 Homogeneous weight bound is as follows:

v, ,
[, <—+<u, i=2,...,m
v
1
u
[, £—=<u, r=2..s

My
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2 Non-homogeneous weight bound is as follows:

i=12,..,m

<

SV,

P =

v,
<upu< u_r r=.2,...s

= |

Subject 1 and 2 are weight bounds that are easily transferable to the weight restrictions.

3 Evaluation of zero weights in weak efficient points and inefficient with AHP

In this part we describe the subject completely throughout the paper. We assume that we have
n DMUs, each DMUj using m inputs ( X;; , 1= 1, ...,m) and producing s outputs (y;j,r=1, ...,
s); assume also that the relative efficiency of these DMUSs is assessed with the CCR model of
Charnes et al. [6].

Max ZS: WY,
r=1

m
s.t. Z viX, =1,
i=1

Zury[j'z ViX; < O’ j=1,...,n, (4)
=1 =1

Vi 2 0’ i=1,...,1’1’1,

H; 2 07 1‘=1,...,S.

Based on this DEA model we can partition the set of DMUSs into the classes E, F, NE and NF
[3]. The DMUs in E are pareto efficient; F is the set of weakly efficient unit. Finally, the
DMUs in NE and NF are inefficient.

In this approach by the use of pareto efficient point and according to the decision-
maker's idea and want, we find weights of DMUs separately, and within this approach after
calculating the whole weights, we determine input-maximum and input-minimum among
inputs, and determine output-maximum and output-minimum among outputs. Then we put
them in the offered model in the following form.

Max ZS: WY,
r=1

m
s.t. Zvixi0=l,
i=1

Zuryrj-z vix; <0, jeE, (5)
=1 i=1

min, {w, } <v, <max, {w,}, i=1,....m,

min, {w, } <p <max {w,}, r=1,...,s.
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In this model wi and wj are the weights of inputs and outputs respectively. We compute
this weights with AHP method. And min;{wi} and max;{wi} are the upper bound and lower
bound of the i-th input weight respectively, and min,{wr} and max,{wr} are the upper bound
and lower bound of the r-th output weight respectively.

By the use of this model amount of efficiency change is less than primary amount.
Obviously, these efficiency scores are lower than those provided by the CCR model as a
result of eliminating the slacks, and consequently, for accounting all sources of inefficiency
see examplesland 2. On the one hand, feasibility of the model depends on decision maker's
idea and want,

But if the model is infeasible we can use the model expressed in a feasible interval for
weights in data envelopment analysis [7]:

Max nguryrp-M(i(Pt)*i(Pﬁ)j

t=1 h=1

s.t. iury[j-i v;x; <0, j=1,...n,
r=1 i=1
;Vixip 1, ©
A ptn, -p,=min{w _} , t=1,..1,, r=1,...,
A ptn, -p,=max{w }, t=1,...,1,, r=1,...s,
ChV+n'h -p;l=min{wi}i, h=1,...1,, i=1,...,m,
ChV+n'h-p;l=max{wi}i, h=1,..1,, i=1,..m,
u.,v, >0, r=1,....,s, 1=1,...m,
nt,pt,p't ,n't >0, t=1,...,1,, h=1,2,...1,.

wheren,, p,;(t =1,..,1)) andn,, p,;(h =1,..,1,) are deviation variable corresponding
to weight restriction, and M is a very large positive number.

4 Example

In the following part, we present two examples of Lingo programmer, and this shows us that
the solved examples are feasible.

The first example deals with weak efficient point and the second one deals with an inefficient
point.

Example 1. Here we have three DMUs including two inputs and one output that have been
solved the question with CCR model and the following results have been appeared.
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Table 1 The result of the efficiency of the 3 DMUs

DMU, x, x, y CCR v v, u
1 I 2 1 1 + + 4+
2 2 1 1 1 + + 4+
3 I 5 1 1 I 0 1

(+: Sign shows calculated weights are positive )

Weights are appointed based on decision maker's views and wants, and weights are
calculated by the use of paired comparison matrix and the presented approach, that weights
for inputs and outputs of the three DMUs are the same as the following.

Weights: w(I) =[0.055, 0.39, 0.09], W(O) =[0.16, 0.6, 0.25].
Now, we solve the question by the use of weights and (2-2) model and the results are:

Table 2 The result of the DMU_ 3

Score v, Vs M
CCR 1 1 0 1
CCR,,., 0.6 033 0.13 0.6

DMU 3

Example 2. Here we have four DMUs that include two inputs and one output and are solved
like the first example.

Table 3 The result of the efficiency of the 4 DMUs

DMU, x;, x, y CCR v, v, pu
1 I 8 1 1 + +
2 2 3 1 1 + + +
3 2 5 1 1 + + +
4 10 25 1 0.8 0.04 0 0.8

Weights: w(I) =[0.055, 0.39, 0.09, 0.2], W(O) =[0.16, 0.6, 0.25, 0.3].
In the new model we have

Table 4 The result of the DMU 4

Score v v, u
CCR 0.8 0.4 0 0.8
CCR,,, 0.6 0.55 0.18 0.6

DMU 4
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5 Conclusion

The presented approach in this paper in fact is a model that appoints weights based on
decision maker's view and wants, and makes a positive weight until drawing inefficient and
weak efficient points on efficient frontier.

This model appoints weights based on analytical hierarchy process and cannot guarantee
that the model is feasible. In fact, on the one hand taking a decision with multiple criteria is
not simple, and because of lack of standards, speed and accuracy of taking a decision is
greatly decreased and this leads to the fact that taking a decision greatly depends on a person
who takes the decision.

When there are a lot of DMUs, we can use the Expert choice (EC) software for
calculation weights
Suggestions:

1  We suggest doing the work except of desire and idea of the decision maker for evaluation
the weight of zero to interfere with inefficient and weak efficient point.

2 We change the weight bound in a way that we have only one pareto efficient point.

3 Trying the using of the decision maker's opinion and weight common, we calculate the
efficiency of inefficient and weak efficient point.
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