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Abstract In this paper, we study the estimation problems for the two-parameter exponentiated Gumbel 
distribution based on lower record values. An exact confidence interval and an exact joint confidence 
region for the parameters are constructed. A simulation study is conducted to study the performance of 
the proposed confidence interval and region. Finally, a numerical example with real data set is given to 
illustrate the proposed procedures. 
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1  Introduction 
 
The Gumbel distribution is perhaps the most widely applied statistical distribution for climate 
modeling. Some of its application areas in climate modeling include: global warming problems, 
flood frequency analysis, rainfall modeling, and wind speed modeling. A recent book by Kotz 
and Nadarajah [1], which describes this distribution, lists over 50 applications, ranging from 
accelerated life testing through to earthquakes, floods, horse racing, rainfall, sea currents, wind 
speeds and track race records (to mention just a few). 

In literature, exponentiated family of distributions defined in two ways. If ( ; )G x  is 
cumulative distribution function (cdf) of a baseline distribution then by adding one more 
parameter (say  ), the cdf of exponentiated baseline distribution ( ; , )F x   is given by  

a)    ; , ; ,    0, , ,F x G x x R


            

b)    ; , 1 1 ; ,    0, , ,F x G x x R


              
where  is parameter space. 

Gupta et al. [2] introduced the exponentiated exponential (EE) distribution as a 
generalization of the exponential distribution. The two parameters EE distribution associated 
with definition (a), have been studied in detail by Gupta and Kundu [3] which is a sub-model of 
the exponentiated Weibull distribution, introduced by Mudholkar and Shrivastava [4]. 
Nadarajah [5] introduced exponentiated Gumbel distribution using (b). Some of its application 
areas in climate modeling include global warming problem, flood frequency analysis, offshore 
modeling, rainfall modeling and wind speed modeling. Persson and Rydén [6], discussed 
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estimation of T-year return values for significant wave height in a case study and compare point 
estimates and their uncertainties to the results given by alternative approaches using Gumbel or 
Generalized Extreme Value distributions. 

A random variable X is said to have Gumbel distribution, if its cdf is 

 ; ,    0, 0,

x

eG x e x


 


    
 
By introducing a shape parameter θ 0 and using definition (a), the cdf of the exponentiated 
Gumbel distribution is 

   ; , ; ,     0, 0, 0,
x

eF x G x e x



    


 

    
 

            (1) 

 
which is simply the thθ power of cdf of the Gumbel distribution. The probability density 
function (pdf) corresponding to (1) is 
 

 ; , ,     0, 0, 0.
x

x e
f x e x


   




 

       (2) 

 
We shall write ( , )X EG   to denote an absolutely continuous random variable X having 
the two-parameter exponentiated Gumbel distribution with shape and scale parameters  and 
σ  respectively, whose pdf is given by (2). 

The purpose of this paper is to construct the interval estimation for the two-parameter  
exponentiated Gumbel distribution based on lower record values. The rest of this paper is 
organized as follows. Section 2 provides some preliminaries. In Section 3, we present an exact 
confidence interval for scale parameter  , and an exact joint confidence region for the 
parameters ( , )   based on lower record values. In Section 4, a Monte Carlo simulation is 
conducted to study the performance of the proposed confidence interval and region. Finally in 
section 5, a numerical example with real data set is presented to illustrate the proposed methods. 
 
 
2  Preliminaries 
 
Let 1 2, ,X X   be a sequence of independent and identically distributed (iid) continuous 
random variables with cdf ( )F x  and pdf ( )f x . An observation jX  is called an upper 
(lower) record value of this sequence its value exceeds (is lower than) that of all previous 
observations.  Generally, let us define 1 1T  1 1,U X  , and for 2n  , 

 
 -1-1min : ,     .

n nn n j T n TT j T X X U X     

 
Then the sequence { }({ })n nU T  is known as upper record statistics (upper record times). 
Similarly, the lower record times nS  and the lower record values nL  are defined as follows: 
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1 1 11,S L X  , and for 2n  , nS =  -1-1min : ,    
n nn j S n Sj S X X L X   . For more details on 

records and its applications, see Nevzorov[7], Ahsanullah[8] and Arnold et. al. [9]. The 
following lemmas are useful in this paper. 
 
Lemma 2.1. Let 1 2 mL L L   be the first m observed lower record values from a 
population with cdf (.)F . Define 
 

ln[ ( )],    1, 2, , .i iU F L i m     
 
Then 1 2 mU U U   are the first m  upper record values from a standard exponential 
distribution. 
 
Proof. From the joint pdf of 1 2, , , mL L L  and using a simple Jacobian argument, we can easily 
obtain the joint pdf of  1 2, , , mU U U  as 
 

 
1 2

-
, ,..., 1 2 1 2, , , ,      0 ... ,m

m

u
U U U m mf u u u e u u u       

 
which is the joint pdf of the first m  upper record values from a standard exponential 
distribution (see Arnold et al.  [9]). The proof is thus obtained. 
 
Lemma 2.2. If 1 2 mU U U   are the first m  upper record values from a standard 
exponential distribution. Then the spacings 1 2 1 1, , , m mU U U U U     are iid random variables 
from a standard exponential distribution. 
 
Proof. The proof can be found in Arnold et al. [9]. 
 
 
3  Main Result 
 
Let 1 2 mL L L   be the first m observed lower record values from the exponentiated 
Gumbel distribution. In this section, a 100(1 )%  confidence interval for scale parameter 
and a 100(1 )%  joint confidence region for ( , )   are constructed based on the observed 
lower records 1 2 mL L L  .  

Let us define exp ,   1, 2, ,i
i

LY i m


     
 

. Then, by Lemma 2.1, 1 2 mY Y Y   are 

the first m upper record values from a standard exponential distribution. Moreover, by Lemma 
2.2, we can observe that 

 
1 1

2 2 1

1m m m

Z Y
Z Y Y

Z Y Y 


  


  


 (3) 
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are iid random variables from a standard exponential distribution. Hence 
 

1 12 2 ,V Z Y   (4) 
 
has a chi-square distribution with 2j degrees of freedom and 
 

 1
2

2 2 ,
m

i m
i

U Z Y Y


    (5) 

 
has a chi-square distribution with 2( 1)m  degrees of freedom. We can also find that U and 
V are independent random variables. Let  
 

1

1

/ 2( 1) 1 ,
/ 2 ( 1) 1

mY YU m UT
V m V m Y

 
       

 (6) 

 
And 
 

2 ,mS U V Y    (7) 
 
It is easy to show that T  has an F distribution with 2( 1)m  and 2  degrees of freedom and 
S  has a chi-square distribution with 2m  degrees of freedom. Furthermore, T  and S  are 
independent, see Johnson et al. ([10], P. 350). 

Let 
1 2( , )F    be the percentile of F  distribution with right-tail probability  and 1  and 

2  degrees of freedom. Next theorem gives an exact confidence interval for the scale parameter  
 base on lower record values. 

 
Theorem 3.1. Suppose that 1 2 mL L L   be the first m observed lower record values 
from EG distribution in (1). Then, for any 0 1  , 
 

   
1 1

1
2 2

,
ln[1 1 (2( 1), 2)] ln[1 1 (2( 1), 2)]

m mL L L L
m F m m F m 




 
 

     
 

 
is a 100(1 )%  confidence interval for  . 
 
Proof. From (6), we know that the pivot 
 

 
1

1

1

1 1 1 ,
1 1

m
m

L L
L L

L
e eT e

m me

 





  



 
           

 

 
has an F  distribution with 2( 1)m  and 2 degrees of freedom. We note that ( )T   is strictly 
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decreasing function of σ. Hence for 0 1  , we obtain 
     

1
2 2

2 1 , 2 2 1 ,2 ,F m T F m 


     

is equivalent to the event 
 

   
1 1

1
2 2

,
ln[1 1 (2( 1), 2)] ln[1 1 (2( 1), 2)]

m mL L L L
m F m m F m 




 
 

     
 

 
this completes the proof.  

It should be mentioned here that we can also use ( )T  to test null hypothesis 0 0:H   . 
Let 2 ( )   denote the percentile of 2  distribution with right-tail probability  and 
degrees of freedom. Next theorem gives an exact joint confidence region for the parameters   
and  . 

 
Theorem 3.2. Suppose that 1 2 mL L L    be the first m observed lower record values 
from EG distribution. Then, the following inequalities determine 100(1 )%  joint 
confidence region for   and  : 
 

   
1 1

1 1 1 1
2 2

,
ln[1 1 (2( 1), 2)] ln[1 1 (2( 1), 2)]

m mL L L L
m F m m F m

 


   

 
 

     
 

2 2
1 1 1 1

2 2

(2 ) (2 )

2 2
m mL L

m m

e e

 

 

 


   

 
   

 
Proof. From (7), we know that 
 

2 ,
mL

S e 


  
 
has a 2  distribution with 2m  degrees of freedom, and it is independent of T . Hence, for
0 1  , we have  
 

1 1 1 1
2 2

[ (2( 1), 2) (2( 1), 2)] 1 ,P F m T F m
 


   

       

 
and 
 

2 2
1 1 1 1

2 2

[ (2 ) (2 )] 1 .P m S m
 

  
   

     

 
From these relationships, we conclude that  
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         2 2
1 1 1 1 1 1 1 1

2 2 2 2

2 1 ,2 2 1 ,2 , 2 2 1 ,P F m T F m m S m
   

  
       

 
        

  
 

 
or equivalently 

   
1 1

1 1 1 1
2 2

,
ln[1 1 (2( 1), 2)] ln[1 1 (2( 1), 2)]

m mL L L L
m F m m F m

 


   

 
 

     
 

2 2
1 1 1 1

2 2

(2 ) (2 )
.

2 2
m mL L

m m

e e

 

 

 


   

 
   

 
4  Simulation study 
 
In this section, a Monte Carlo simulation is conducted to study the performance of the proposed 
confidence interval and joint confidence region. In this simulation, we randomly generated 
lower record sample 1 2,   ,   . . .  ,  mL L L  from the Gumbel distribution with the value of 
parameters  0.2, 0.01   , and then computed 95%  confidence intervals and regions 
using the results presented in Section 3. We then replicated the process 5,000  times. We 
presented in Table 1, the simulated average confidence length for parameter  , confidence 
area for the parameters ( , )   and the 95%  coverage probabilities of the proposed 
confidence intervals and regions. 

From Table 1, we observe when m  increases, the average confidence length for  , and 
the average confidence area for ( , )   are decreased. The simulation results shows that the 
coverage probabilities of the exact confidence intervals for parameter   and joint confidence 
regions for parameters ( , )   are close to the desired level of 0.95  for different sample sizes. 
Hence, our proposed methods for constructing exact confidence intervals and joint confidence 
regions can becused reliably. 

 
 

Table 1 The simulated average confidence length (CL), confidence area (CA) and 95%  coverage probabilities 
(CP) for the parameters. 

 
m ( ) CL   ( , )CA    ( )CP   ( , )CP    

3 0.0819 56923.76 0.955 0.948 
5 0.0367 0.1605 0.952 0.956 
7 0.0268 0.0874 0.950 0.950 

10 0.0210 0.0516 0.953 0.952 
15 0.0171 0.0319 0.957 0.954 
20 0.0149 0.0217 0.954 0.957 
25 0.0137 0.0173 0.956 0.954 
30 0.0130 0.0146 0.957 0.948 
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5  Numerical example 
 

In this section, real example with climate record data are given to illustrate the proposed 
confidence intervals and joint confidence regions. We present a data analysis and illustrate 
application of the results in Section 3, to the seasonal (July 1-June 30) rainfall in inches 
recorded at Los Angeles Civic Center from 1962 to 2012 (see the website of Los Angeles 
Almanac: http://www.laalmanac.com/ weather/we13.htm). The data are as follows: 
 
08.38,   07.93,   13.68,   20.44,   22.00,   16.58,   27.47,   07.74,   12.32,   07.17, 
21.26,   14.92,   14.35,   07.21,   12.30,   33.44,   19.67,   26.98,   08.96,   10.71, 
31.28,   10.43,   12.82,   17.86,   07.66,   12.48,   08.08,   07.35,   11.99,   21.00, 
27.36,   08.11,   24.35,   12.44,   12.40,   31.01,   09.09,   11.57,   17.94,   04.42, 
16.42,   09.25,   37.96,   13.19,   03.21,   13.53,   09.08,   16.36,   20.20,   08.69. 
 
Here, we checked the validity of the exponentiated Gumbel Model based on the parameters
ˆ ˆ7.3840, 5.8332   , using the Kolmogorov Smirnov (K-S) test. It is observed that the K-S 

distance is 0.0996K S   with a corresponding 0.6818P Value  . So, the exponentiated 
Gumbel model provides a good fit to the above data. If only the lower record values of the 
seasonal rainfall have been observed, these are 
 
8.38,   7.93,   7.74,   7.17,   4.42,   3.21. 
 
To find a 95%  confidence interval for  , and a joint confidence region for   and  , we 
need the following percentiles: 
 

 0.025 0.97510,2 39.39797, (10, 2) 0.1832712,F F   

 0.0127 0.987310, 2 78.13913, (10, 2) 0.1434067,F F   
 
and 
 

 2 2
0.0127 0.987312 25.4812, (12) 3.765882.    

 
By Theorem 3.1, the 95% CI for  is (1.1277, 6.4876), with confidence length 5.3599. By 
Theorem 3.2, the 95%  JCR for   and   is determined by the following inequalities: 
  

3.21 3.21
3.7656 25.48120.8659 9.5635,      .
2 2e e 

 
 

     

 
with area 114285453 .  Figure 1 shows the above joint confidence region for the parameters. 
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Fig. 1 Joint confidence region for parameters   and  . 
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