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Abstract In this paper we consider a global optimization approach for solving fuzzy fractional
posynomial geometric programming problems. The problem of concern involves positive trapezoidal
fuzzy numbers in the objective function. For obtaining an optimal solution, Dinkelbach’s algorithm
which achieves the optimal solution of the optimization problem by means of solving a sequence of
subproblems is extended to the proposed problem. In addition, An illustrative example is included to
demonstrate the correctness of the proposed solution algorithm.
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1 Introduction

In most of the practical situations the possible value of the parameters involved in objective
could not be defined precisely due to the lack of available data. The concept of fuzzy sets [1]
is seemed to be most appropriate to deal with such imprecise data. To deal with fuzziness,
fuzzy programming have been proposed to make decisions under an uncertainty environment.
Cao was the pioneer in the research topic of fuzzy geometric programming problem [2, 3].
The optimization problem in which the objective function appears as a ratio of two
functions is known as a fractional programming (FP) problem [4-6]. Fractional objectives
appear in many real world situations. For instance, we often need to optimize the efficiency of
some activities like cost/time, cost/profit, and output/employee. For an overview of these
applications, we refer to [7, 8] and the references therein. The optimization problem involving
imprecise parameters in FP are called fuzzy fractional programming (FFP) problem [9-12].
There are different solution algorithms for determining the optimal solution of particular
kinds of fractional programming problems. Charnes and Cooper [13] proposed an exact linear
programming reformulation of the continuous linear fractional program. One of the popular
solution methods was first introduced by Martos and Andrew Whinston [14] and Jagannathan
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[15] and they named it as the so-called “parametric” approach. The main idea of this
parametric approach is to solve an equivalent parametric problem of the fractional program.
Dinkelbach [16] extended the parametric approach to solve the continuous nonlinear
fractional programs using the Newton’s method. It is worth mentioning that Dinkelbach’s
method is valid for fractional problems with objectives being minimized or maximized.
Several authors extended Dinkelbach’s approach to solve several problems involving
fractional objectives such as generalized fractional programming problems [6, 17] and the
minimum spanning tree with sum of ratios problems [18]. Almogy and Levin [19] extended
the parametric approach of Dinkelbach to solve sum of ratios problems. Tammer et al. [20]
and Valipour et al. [21] extended Dinkelbach’s approach to solve multiobjective linear
fractional programming (MOLFP) problems. An algorithm based on the parametric approach
was proposed to solve integer linear fractional programming problems by Ishii et al. [22].
Pochet and Warichet [23] and You et al. [24] showed that the parametric approach is very
efficient for solving mixed-integer linear fractional programming (MILFP) models for cyclic
scheduling. Yue, Guillén-Gosalbez and You [25] proposed an exact mixed-integer linear
programming (MILP) reformulation for large-scale MILFP problems, although it cannot be
applied to mixed-integer non-linear fractional programs. Zhong and You [26] is concerned
with the parametric algorithms for solving large-scale mixed-integer linear and nonlinear
fractional programming problems. Chu and You [27] developed an efficient global
optimization algorithm for the MINLFP master problem that is based on a parametric
fractional programming approach. Also to optimize the non convex MINLFP problems, Gong
et al. [28] and Chu and You [29] proposed the global optimization strategies based on the
Dinkelbach’s algorithm. Although Dinkelbach’s approach has been used to solve many
different problems involving fractional objectives, there is no absolutely successful extension
to solve fuzzy fractional posynomial geometric programming (FFPGP) problems.

The current paper attempts to propose an iterative algorithm that extends Dinkelbach’s
approach to solve a fractional posynomial geometric programming problem with positive
trapezoidal fuzzy coefficients in objective function. This paper is organized as follows: fuzzy
notations and definitions used in the remaining parts of the paper are presented in Section 2.
Section 3 contains the mathematical formulation of fuzzy fractional posynomial geometric
programming problem and its solving procedure. In addition, parameterized form of the
problem concern is described by proving some theorems. An illustrative example is given in
Section 4 to clarify the solution algorithm. The paper ends with conclusions in Section 5.

2 Preliminaries

In this section, we give some notions and definitions on which our research in this paper is
based.

Fuzzy sets first introduced by Zadeh [1] as a mathematical way of representing
vagueness in everyday life. According to [30], The characteristic function u, of a crisp set
A< X assigns a value either 0 or 1 to each member in X . This function can be generalized
to a function u; such that the value assigned to the element of the universal set X fall within

a specified range i.e. u; :X —[0,1]. The assigned value indicates the membership grade of
the element in the set A. The function u; is called the membership function and the set

A= {Ge,p, (x))sx €X} defined by p;(x) for each xe€ X is called a fuzzy set . A fuzzy set
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A , defined on the universal set of real numbers R, is said to be a fuzzy number if its
membership function has the following characteristics:
1. u; :R —[0,1] is continuous.

2. p;(x)=0 forall x e (~0,a]U[d,o).
3. p;(x) is strictly increasing on [a,b] and strictly decreasing on [c,d].
4. p;(x)=1 forall xe[b,c], where a<b<c<d.

Definition 2.1 [30] A fuzzy number 4 = (a,b,c,d) is said to be a trapezoidal fuzzy number if
it’s membership function is given by:

& —a)’ a<x <b,
(b—a)
py(x)=+1, b<x <c, (1)
M’ c<x <d
(c—d)

The « -cut (level set) [31] of fuzzy number A4 can be obtained as:
(A )y =A, ={x [u;(x)2aj, for example, let A be a trapezoidal fuzzy number, to find the
a -cut of 4, we first set a €[0,1] to both left and right reference functions of A , that is,
a= (x=a) and o= x=d)
(b—a) (c—d)
x=—(d —c)a +d which gives the a -cut of 4 as:
A, =[4"(@), A (@)]=[(b -a)a +a,—(d —c)a +d].
Definition 2.2 [32] A trapezoidal fuzzy number 4 =(a,b,c,d) is said to be positive
(negative) trapezoidal fuzzy number, denoted by 4 >0 (4 <0), if and only if >0 (c <0).
Definition 2.3 [33] Let a>0,b>0 and consider the interval [a,b]. From a mathematical

point of view, any real number can be represented on a line. Similarly, we can represent an
interval by a function. If the interval is of the form [a,b], the interval function is taken as

h(q)=a"""b?, for q €[0,1].
According to [34], a signomial function is defined as the sum of signomial terms, which
in turn consists of products of power functions. Thus, a signomial function can be expressed

. Expressing x in terms of a, we have x=(b—a)a+a and

. J m .
mathematically as o(x) = zk:lck Hl:lxly’d, where the coefficients ¢, and the powers y,, are

real. A special type of signomial function, where all coefficients ¢, >0,k =1,...,J, is called
posynomial function .

Definition 2.4 [35] A posynomial geometric programming (PGP) problem can be stated as:
Find x = (x,,X,,...,X, )" s0 as to

J, m
: — 0 Y0kl
min - g,(x) = Zk:ICOk =

s.1. (2)
J. m . .
g.(x)= Zk’:lcik Hl:lxly’k’ <1, i=12,..p,
x>0, [=12,.,m,

where ¢, and ¢, are positive real constant coefficients for all i,k ;
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7o, and y,, are arbitrary real constant exponents for all i,4,/;
J, 1is the number of terms present in the objective function g,(x);

J, is the number of terms present in the i-th constraint, i =1,2,...,p .

3 Problem formulation and solution concept

In this section, a fuzzy fractional posynomial geometric programming problem and its global
optimization based on the iterative parametric approach are described.

3.1 Problem formulation

The problem to be considered in this paper is the following fuzzy fractional posynomial
geometric programming (FFPGP) problem:

Find x = (x,,X,,...,X, )" s0 as to
~ _ J, o~ m 12
gl(‘x)_zklzlclk l:1xllkl
_ J m 12
gZ(‘x)_ZkZZICZk [:1x12kl
s.1. 3)
xeX={x0<x"<x<x"},

T . .
where x = (x,,X,,...,X, )" is a variable vector, and T stands for transpose;

the feasible region X is nonempty, compact and bounded;
c,, are positive real constant coefficients for all & ;

7, and y,,, are arbitrary real constant exponents for all &,/;
¢, =(a,.b,.c,.d,) are positive trapezoidal fuzzy numbers;

J, and J, represent the number of product terms of numerator and of denominator in the
objective function, respectively;
g,(x) and g,(x) are fuzzy posynomial function and posynomial function, respectively, and

g,(x) is positive for all x in the feasible region X .

3.2 solution concept

In this subsection, a global optimization approach for solving the problem (3) involving
positive trapezoidal fuzzy coefficient in objective function is presented.

3.2.1 Formulation based on interval function

At first for a certain degree a = o €[0,1], estimated by the decision maker, the problem (3)

can be understood as the following nonfuzzy « -fractional posynomial geometric
programming ( « -FPGP) problem:
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Y few (e)ey @I T/ ™
ij CZk Hm x Yokl
s.t. “4)
xeX={x0<x"<x<x}.
Next based on Definition 2.3 in section 2, optimization problem (4 ) can be written as the
following equivalent problem (F, ) :

S e (@) (e @) T e
ij Cou Hm x
s.t. (5)
xeX={x0<x"<x<x"},
0<g<l.

The following theorem gives the idea that the « -optimal solution of the problem (4) is
possible to find in the form of problem (5) ,(see [33]).

Theorem 3.1 the problem (5) provides the solution of the problem (4 ).

Max

Max

Proof. For any £k, if we take B, €[c,, (a),c);(a)], the problem (4 ) reduces to

STl
k=1"k 111
J. m
2 Y2kl
2o [Ty

s.t. (6)
xeX={x0<x"<x<x}.

Let us consider the interval function h(q)=a""’b? for ¢ €[0,1] and for an interval S €[a,b].

Since h(g) is a strictly monotone increasing and continuous function, the above problem

reduces to:

STl
k=1"k 111
J. m
2 Y2kl
2o [y

S.1. (7)
xeX ={x0<x"<x<x"},

where B, €(c; (@) (¢ (o)) and ¢ €[0,1].

Since h(g)=a"b? for qe€[0,1] is a strictly monotone and continuous function, its

Max

Max

logd —loga

inverse exists. Let & be the inverse of A(q), then g = , therefore, we can find

logh—loga
any particular S for some values of g €[0,1].
Thus we can find the « -optimal solution of the problem (4 ) only by solving the problem
).
Note that for g =0, the lower bound of the interval value of the parameter g is used to
find the optimal solution, so the following (£,) problem yields the lower bound of the

optimal solution of problem (5).


https://ijaor.com/article-1-538-en.html

[ Downloaded from ijaor.com on 2025-10-16 ]

32 F. Zahmatkesh, B. Y. Cao/ IJAOR Vol. 6, No. 4, 27-38, Autumn 2016 (Serial #22)

_ J _ m
g =2 ew @I ], x ™
J m
g2(x ) = Zkzzlcﬂc lelxlyzm
s.t. (8)
xeX={x0<x"<x<x"},

also, the case ¢ =1 means that the upper bound of the interval parameter g is used for finding

Max

the optimal solution, then the following (F) problem yields the upper bound of the optimal
solution of problem (5).

+ J + m
g =2 en @I ], x ™
J m
g2(x ) = Zkzzlcﬂc lelxlyzm
s.t. 9)

xeX ={x0<x"<x<xY}.

Two optimization problems (8) and (9) can be more tractable by adopting Dinkledbach’s

Max

parametric approach [16] as we will see in the following subsection.

3.2.2 Equivalent parametric problem and its properties

Consider the two fractional geometric programming problems (8) and (9)where their
numerator and denominator are continuous posynomial functions. Using a parametric
approach in [16], the above (8) and (9) problems can be solved indirectly by finding the

solution to the following two equivalent parametric problems (P/1 _) and (P/1 . ), respectively,

Le.,
O(A7) = max{g,, (x)= A g,(x);x € X}, (10)
and
O(A7) = max{g,, (x) — A" g,(x);x € X}, (11)

where A (resp. A7) is a parameter. For a fixed parameter A (resp. A"), the parametric
problem (10) (resp. (11)) is typically easier to solve than the fractional geometric

programming problem (8) (resp. (9)).

In what follows, since the properties of function Q(A) and solution procedure to
problem (10) being similar to the properties of function Q(A1") and solution procedure to
problem (11), respectively, we only prove the properties of Q(A1") and only show solution
procedure to problem (10).

The parametric problem (10) has some special properties that can be utilized for solving
the fractional geometric programming problem (8) . Specifically, we show through following
Lemma that the function Q(17) is convex, strictly monotonic decreasing and continuous, and
then we show that nonlinear equation Q(A ) =0 has a unique solution A~ which is exactly
the global optimal objective value of the problem (8) .

Lemma 3.2 Let O(4") = max{g,,(x)—A g,(x);x € X}, then
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a. The function Q(A") is strictly monotonic decreasing and convex over R.

b. The function Q(4") is continuous for A" eR.

c. OQ(4)=0 has a unique solution.
Proof. (a) The monotonically decreasing of Q(A4") follows from the positivity of g,(x). For
convexity, let 0<¢<1 and x, be the optimal solution that maximizes Q(¢tA, + (1-1)A,) with
A # A, . Then,
Ot +(1-1)13) = 1, (x) ~ (1 +(1-1)13)g,(x,)
=gy, (%)~ A & )1+ (1-0)g, ()~ g (x,)]
< tmax{g,, (x)~ 1 ,(x);x € X} +(1-Dymaxig,, (x) ~ Zg,(x);x € X}
= 10(%) +(1-)0().
(b) Let x' be the optimal solution of Q(Il) , then g,(x') is a positive constant and we also
have

_1 _ _1 _ 1
(A" ) = max{g,, () -4 g, (x);x e X} =g, (x') -4 g,(x).
The function Q(A") is continuous, because it is monotonically decreasing (based on (« )), and

also for every £ >0, we can finda 6 = >0, such that for all 7 eR,0<|A” i <0,

1

g,(x)
we have

107 ) =0 Fl (g, (2~ 2 g, (")} —max{g;, (x)~ A g,(x);x € X}
g (-4 g, ()} —{g, ()~ g, (x|

(=2 )g, Y HA =2 g, s

since g,(x')>0 and 0<|A -4 <=

we have 0<|Q(4" )~ 0O(1) [<e.

1 b

g,(x
(c) Since for g,(x)>0, limr QA ) =40 and lim, .., (4 ) =—co . Furthermore, based
on monotonically decreasing of Q(4"), we can conclude that Q(A)=0 has a unique
solution.
Now, we have the following Theorem for the equivalence between the parametric
problem (10) and the fractional geometric programming problem (8).
Theorem 3.3 The variable x" is a global optimal solution to the fractional geometric
programming problem (8) if and only if x” is a global optimal solution to the parametric

problem (10) with the parameter I* such that Q(I*) =0.

Proof. Let x € X be a global optimal solution of the parametric problem (P . ), then we
-

have g, (x)— l’*gz (x)=0 and 21, (X)— I*gz x)<g, (x)- ol 2,(x)=0,Vxe X . Since

*

g,(x)>0, we have i =8 (X*)Z gl“(x),VxeX . Thus, A is the maximum of the
g(x) g

fractional geometric programming problem (8) and x" is the global optimal solution of it.
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Conversely, let x bea global optimal solution of the fractional geometric programming
problem (8 and A be the optimal objective function value, so we have
gla(‘x) gla( ) v EX

&> (x ) &> (x)
g, (%) — ol 2,(x)<g., (x)=A g,(x')=0,Vxe X . This implies that x" is the global optimal

Since g,(x)>0, we have

solution of the parametric problem (10).
As will be presented in the next subsection, Dinkelbach’s iterative algorithm relies on the
solution of a sequence of parametric subproblems (Pf) in order to converge to the global

n

optimal solution of the fractional geometric programming problem (8).

3.2.3 Iterative algorithm for solving parametric problem (10)

Dinkelbach’s iterative algorithm [16] solves the parametric problem (10) by generating a

sequences of A~ converging to A~ . The algorithm terminates once the objective value of the
problem (10) becomes zero.

Based on the properties of the parametric problem (10), it is easy to see that
00)>0 1 <1, OA)=0a A =4 and QA)<0& A >4
Therefore, the solution of the problem (10) ends up with finding the root of equation
O(A)=max{g, (x)-A g,(x);xe X} =0. Although there are a number of root-finding

algorithms for solving nonlinear equations, in this paper, we apply the Newton’s method to
solve the parametric problem (10).

In Newton’s method [16, 36], 4, is defined by, A, =21, _Q0G) We can use the

oA
approximated  subgradient [26] at point A to estimate the derivative,
o'(A)= d%;ﬁ“ W o —g,(x.), which is the negative value of the denominator evaluated at x,,

n

a global optimal solution of max{g (x)—2 g,(x);xeX}. Therefore, we have

oo O o ()-8 (x) _ gu(x,)
n+l1 n * n *y0°
- 8,(x,) gz(x ) g,(x,)
The full procedure of the Dinkelbach’s algorithm based on the Newton’s method for
solving (10) is as follows:

gla( 0)
g,(x)
Step 2: Solve Q(X,) = max{g;, (x)-1,g,(x);x € X} =0. Denote the optimal solution as x, .

Step 1: Choose arbitrary x, € X and set A, = or simply set 4, =0 and n=1.
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Step3: If |Q(X)|< S (optimality tolerance), stop and output x as the optimal solution and

A, as optimal objective. If |Q(4)[z6, let 4, =%, update n with n+1 and update
8\ X

n

A, with 4.

Go to Step 2.

3.3 Solution algorithm

We now summarize the proposed approach for solving the problem (3) with positive
trapezoidal fuzzy coefficient in this work and construct a solution algorithm.
The basic steps of the algorithm are given below:

Step 0: Start with an initial level set @ =a = 0.

Step 1: Convert problem FFPGP into it’s nonfuzzy version a -FPGP.

Step 2 : Rewrite problem (4 ) in the forms of two optimization problems (8) and (9).

Step 3: Change the problems (8) and (9) into the two equivalent parametric problems (10)
and (11), respectively.

Step 4: Solve the problems (10) and (11) for finding the lower and upper bound of the « -
optimal solution of problem (4 ) by using Dinkelbach’s algorithm.

Step5: Set oo = (ot +step) €[0,1] and go to Step 1.

Step 6: Repeat again the above procedure until the interval [0,1] is fully exhausted. Then,

stop.
Remark 3.4 It should be stated here that in the solution algorithm suggested above, a
systematic variation of « -level set among the interval [0,1] will yield another optimal

solution to problem (10) and the decision maker must determine this « -level set according
to his desire.

4 Numerical example

In this section, a numerical example is given to illustrate the validity of the algorithm
proposed in Section 3.
Example 4.1 Consider the following FFPGP problem:

(2,2.5,3.5,5)x 7x;'x x ;' +(1,5,6,9)x x 37x
3,005, +x, %, x,
s.1. (12)
1<x,x,<14,0.1<x, <1,1<x, <10.

By using « -cut of the fuzzy numbers coefficients, the FFPGP problem (12) can be

converted to the following nonfuzzy a -FPGP problem:
[0.5a+2,-1.5c +5]x [x ) 'x x ;' +[4a +1,-3ac +9]x x x 17

MCDC 2 1 0.5
3, XX, +Xx, X, X
2 3V 4 1 2 4

S.1. (13)
1<x,x,<14,0.1<x, <1,1<x, <10.
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According to problem (5) in Section 3, the a -FPGP problem (13) can be transformed
into the following form:
(0.50 +2) ™ (=1.5a +5) x 'xJ'x x ;' + (4o + 1) (=3 +9) x x 3°x°
3,705, +x, %, x,
s.t. (14)
1<x,x,<14,0.1<x,<1,1<x,<10,0<¢g <1.

Now by putting ¢ =0 and ¢ =1, the lower and upper bounds of the optimal solution of

Max

problem (14) will find by solving the following problems (15) and (16), respectively:

Max (0.50+2)x [x)'x x ;' + (4o +1Dx x 7% )7

3x5°x 3, +x; %,
s.1. (15)
1<x,x,<14,0.1<x, <1,1<x, <10.
0315

Max (=1.5a +5)x [x "% x ;' + (=3 +9)x x x|

3,705, +x %,
s.t. (16)
1<x,x,<14,0.1<x, <1,1<x, <10.

By using the parametric approach [16], the above problems (15) and (16) will take the

following (17) and (18) forms, respectively:

Max  (0.50+2)x 'x)'x x '+ (@Ga+Dx x °x 1" =47 (Bx ) x x, +x,'x5x )

S.1. (17)
1<x,x,<14,0.1<x, <1,1<x, <10.

Max  (-1.5a+5)xx "% x ' +(Ba+9x x°x3° =27 Gx x x, +x,'x,%x,)

S.1. (18)
1<x,x,<14,0.1<x, <1,1<x, <10.

The above problems (17) and (18) has been solved using Dinkelbach’s algorithm and the
results are reported in Table 1. The absolute optimality tolerance for the parametric

algorithms are setas § =107".

Table 1. Results for the Example 4.1

o -level set  g-optimal objective value (/‘tj ,ﬂf*) global a-optimal solution (X,,X;,X;,X;)

a=0 (1712.4, 10120.44) (14,14, 1, 1)
a=0.24 (2623.7,9327.1) (14,14, 1, 1)
a=0.53 (3724.85, 8368.45) (14,14, 1, 1)
a=0.86 (4977.81,7277.62) (14,14, 1, 1)

a=1 (5509.4, 6814.8) (14,14, 1, 1)

5 Conclusion

This paper has dealt with a fuzzified version of a fractional posynomial geometric
programming problem in which fuzzy parameters are involved in the objective function. The
algorithm presented here proposed a solution technique using a parametric approach for
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solving fuzzy fractional posynomial geometric programming FFPGP problem. Based on the
obtained results in the last section, we conclude that using the proposed solution algorithm is
useful to solve a FFPGP problem.

The advantages of the proposed procedure in this paper with respect to the other work on
fractional programs is as follows. The proposed problem in this paper is a generalization of
the fractional posynomial geometric programming problem where the coefficients of
numerator of objective function are fuzzy numbers.

To our knowledge, this is the first algorithm that has been proposed for solving this
problem. We believe this problem could be important for the future study of the fuzzy
fractional optimization.

The denominator of objective function adopted in this paper is still the real-valued
function. In the future research, we may extend to consider the both numerator and
denominator of objective function as the fuzzy-valued functions.
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