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Abstract In this paper, a regularized long-wave equation (RLWE) is solved by using the Adomian's
decomposition method (ADM), modified Adomian's decomposition method (MADM), variational
iteration method (VIM), modified variational iteration method (MVIM), and homotopy analysis
method (HAM). The approximate solution of this equation is calculated in the form of series whose
components are computed by applying a recursive relation. The existence and uniqueness of the
solution and the convergence of the proposed methods are proved. A numerical example is studied to
demonstrate the accuracy of the presented methods.
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1 Introduction

The RLW equation has a higher order nonlinearity of the form
u, +u, +au'u, +u_ =0,n21 (1)
where a is a constant. The case n = 1 corresponds to the RLW equation, which was first
proposed in 1972 by Benjamin, et al. [1]. This equation is an alternative to the Korteweg-de
Vries (KdV) equation and describes the unidirectional propagation of small-amplitude long
waves on the surface of water in a channel. The RLW equation is well-known in physical
applications. This equation models long wave in a nonlinear dispersive system. Their
solutions exhibit definite soliton-like behavior that is not explainable by any known theory
[2]. The RLW equation is 7 =2 used in the analysis of the surface waves of long wavelength
in liquids, of hydromagnetic waves in cold plasma, a coustic-gravity wave in compressible
fluids and acoustic waves in anharmonic crystals, wheren =2 , the RLW equation is called
the modified RLW equation (mRLWE). A lot of works have been done in order to find the
numerical solution of this equation. For example, [3-22],variational iteration method [23,-25],
homotopy analysis method [26].

In this work, we develop the ADM, MADM, VIM, MVIM and HAM to solve the Eq.(1)

* Corresponding Author. (<)
E-Mail: allahviranloo@yahoo.com (T. Allahviranloo)

T. Allahviranloo
Department of Mathematics, Parand Branch, Islamic Azad University, Parand, Iran.

Sh. Sadigh Behzadi
Department of Mathematics, Qazvin Branch, Islamic Azad University, Qazvin, Iran.


https://ijaor.com/article-1-547-en.html

[ Downloaded from ijaor.com on 2025-12-01 ]

56 T. Allahviranloo and Sh. Sadigh Behzadi, / IJAOR Vol. 7, No. 2, 55-68, Springer 2017 (Serial #24)

with the iitial conditions:
u(x,0)=/(x), (2)
U (x,O) =g (x ),

The paper is organized as follows. In section 2, the mentioned iterative methods are
introduced for solving Eq. (1). In section 3 we prove the existence and uniqueness of the
solution and convergence of the proposed methods. Finally, a numerical example is presented
in section 4 to illustrate the accuracy of these methods.

In order to obtain an approximate solution of Eq. (1), let us integrate one time Eq. (1)
with respect to t using the initial conditions we obtain,

u(x,0)=—F(x,t) ID "(x,t))dt - IH x,t))dt, (3)
where,

. COu(x.)
D (u(x’t))_—éxi , 1 =12,

F(x,t)=f(x)+g()+D*u(x,1)),

Hux,t)=au"(x,t)Du(x,t)).

In Eq. (3), we assume F (x,f)is bounded for all x, t in J =[0,T |(T €R)
The terms D (u (x ,t )) JH (u (x N )) are Lipschitz continuous with,

‘D (u)-D (u*)‘ <L, ‘u —u*‘

‘H (u)—H(u*)‘SLZ ‘u —u*‘.

2 The iterative methods
2.1 description of the madm and adm

The Adomian decomposition method is applied to the following general nonlinear equation
Lu+Ru+Nu=g, 4)

where u (x ,t)is the unknown function, L is the highest order derivative operator, which is
assumed to be easily invertible, R is a linear differential operator of order less than L,Nu
represents the nonlinear terms, and g, is the source term. Applying the inverse operator L~
to both sides of Eq.(4), and using the given conditions we obtain

u(x,t)=fi(x)=L" (Ru)=L" (Nu) (5)
where the function £ (x )represents the terms arising from integrating the source termg,,The

nonlinear operator Nu =G, (u) is decomposed as

u)=S4,, ©)

where A4, ,n >0 are the Adomian polynomials determined formally as follows:

E)
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The first Adomian polynomials (introduced in [27,28,29]) are:
4,=G, (uo ) ,

A4, :ulGl(uO),
, 1 ; 2
A4, =u2G1(u0)+5u12G1(u0), (8)

, ) .o
45 =u,G, (”0)+M1U2G1 (u0)+§u13G1 (uo),...

2.1.1 Adomian decomposition method

The standard decomposition technique represents the solution ofu(x,t) in (4) as the
following series,

u(x,t)ziui (x.1), )

where, the components u,,u,,... which can be determined recursively
u,=—F (x ,t ) ,

u, :—]'A0 (x,1)dt —thO (x,t)dt,
0 0 (10)

u,,, =—.([An (x,1)dt —.([Bn (x,t)dt, n>0

Substituting (8) into (10) leads to the determination of the components of w.

2.1.2 The modified adomian decomposition method

The modified decomposition method was introduced by Wazwaz [30]. The modified forms
was established on the assumption that the function F (x,t)can be divided into two parts,
namely F,(x,t)and F,(x,¢).Under this assumption we set

F(x,t)=F(x,t)+F(x,t). (11)
Accordingly, a slight variation was proposed only on the components u, and u;. The
suggestion was that only the part F; be assigned to the zeroth component u, , whereas the

remaining part F, be combined with the other terms given in (11) to define u;. Consequently,
the modified recursive relation

I/lo = _E (x 7t)7
u, =—F,(x,t)~ L (Ruy)~ L (4,), (12)

u, =-L"(Ru,)~L"(4,), n>1,

n+
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was developed.
To obtain the approximation solution of Eq. (1), according to the MADM, we can write
the iterative formula (12) as follows:

u, =—Fl(x,t),

u, ==F, (x )= [4,(x ¢ )dt = [B, (x ¢ )dt,
0 0 (13)

=—[a, (x,t)de = [B, (x.t)dt.

0 0

u

n+l

The operators D(u),H (u) are usually represented by the infinite series of the Adomian
polynomials as follows:

D@ﬂ=§¥“
11@):2?,

where 4, and B, are the Adomian polynomials.
Also, we can use the following formula for the Adomian polynomials [31]:

4,=D(s,)-S4,.
i=0

o (14)
B,=H(s,)-YB,.

i=0
Where s, = > u, (x,) is the partial sum.

i=0

3 Description of the vim and mvim
In the VIM [32-33], it has been considered the following nonlinear differential equation:
Lu+Nu=g, (15)

where L is a linear operator, N is a nonlinear operator, and g, is a known analytical

function. In this case, the functions u; may be determined recursively by
u,,, (x ,t) =u, (x ,t)+.[ﬂ,(x ,‘L'){L (un (x ,‘L'))-l—N (un (x ,T))—gl (x ,T)}dr,n >0, (16)
0

where A is a general lagrange multiplier, which can be computed using the variational theory.
Here the function u, (x ,t) is a restricted variations, which means ou, =0. Therefore, we
first determine the lagrange multiplier A that will be identified optimally via integration by
parts. The successive approximation u,, (x ,t) ,n >0, of the solution u (x ,T)Wﬂl be readily

obtained upon using the obtained lagrange multiplier and by using any selective function u,.
The zeroth approximationu, may be selected any function that just satisfies at least the
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initial and boundary conditions. With A determined, then several approximations
u, (x,t) ,n >0 follow immediately. Consequently, the exact solution may be obtained by
using

u(x,t)=limu, (x,t). (17)

The VIM has been shown to solve effectively, easily, and accurately a large class of nonlinear
problems with approximations converge rapidly to accurate solutions.
To obtain the approximation solution of Eq. (1), according to the VIM, we can write

iteration formula (16) as follows:

w, . (x,0)=u, (x,0)+L" {){un (x,0)+F(x ,t)+ID (un (x ,t))dt +'IH (un (x,t))dtD ,n>0  (18)

0
where,

u ()= .[(')dT

To find the optimal A, we proceed as

Su, . (x, )zéun(x,t)+5Lt1£){ (x,0)+F (x,1) jD (x.t)) dz+jH t))dtD. (19)

From Eq. (19), the stationary conditions can be obtained as follows:
A=0and 1+1=0.

Therefore, the Lagrange multipliers can be identified as A =—1 and by substituting in
(18), the following iteration formula is obtained.

u, :—F(x,t),

20
un+1(x,t):un(x,t)+Ltl[ (x,t)+F (x,t +ID (x.t dt+jH t))dt]),n > 0. (20)

To obtain the approximation solution of Eq. (1), based on the MVIM [34,35,36], we can write
the following iteration formula:

u, :—F(x,t),

U, (x,0)=u, (x,0)+L UD(un (x,t)—u,, (x,t )t +ij (un (x.t)—u,  (x,t ))dt] ,n 0.

Relations (20) and (21) will enable us to determine the components u, (x,t) recursively for
n = 0.

@2y

4 Description of the ham

Consider

N [u] =0,
where N is a nonlinear operator, u(x,t) is an unknown function and x is an independent

variable. Let u,(x,f) denotes an initial guess of the exact solution u (x ,t),h #0, an
auxiliary parameter, H (x ,t) # 0 an auxiliary function, and L an auxiliary linear operator with

the property L [s (x,1 )] =0, whens(x,/)=0. Then using g e[0,1]as an embedding
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parameter, we construct a homotopy as follows:
(1-q)L [d)(x g ) —u,(x,t )} —qhH (x ,t )N [d) (x ,t;q)} =
h}[d)(x,t;q);uo (x,t),H1 (x,t),h,q}

It should be emphasized that we have great freedom to choose the initial guess u,(x,¢), the

(22)

auxiliary linear operator L, the non-zero auxiliary parameter h, and the auxiliary function
H (x,t).
Enforcing the homotopy (22) to be zero, i.e.,

ﬁl[(D(x,t;q);uo(x,t),Hl(x,t),h,quo, (23)
we have the so-called zero-order deformation equation

(l—q )L [(D(x ,t;q)—uo (x ,t )] =ghH (x ,t )N [ (x ,13q )]. (24)
When q = 0, the zero-order deformation Eq. (24) becomes

CD(x;O):uo(x,t), (25)

and when g =1, since h #0 andH, (x,t);tO , the zero-order deformation Eq. (24) is
equivalent to

O (xt:1)=u(x.1). (26)
Thus, according to (25) and (26), as the embedding parameter ¢q increases from
0 l,CD(x,t;q), varies continuously from the initial approximation uy(x,t) to the exact
solution u(x,t). Such a kind of continuous variation is called deformation in homotopy
[37,38].

Due to Taylor's theorem, CD(x t'q) can be expanded in a power series of q as follows

D (x,159) Zum x,t) (27)
m=1
where
10" O(x.159)
u, (x.t) _ﬁaq—'" ly=o.

Let the initial guessu, (x ! ) , the auxiliary linear parameter L, the nonzero auxiliary parameter
h and the auxiliary function (x,t) be properly chosen so that the power series (27) of
CD(x ,t;q) converges at ¢ = 1, then, we have under these assumptions the solution series

u(x,t)= ®(x,t;1)= Zum x,t) (28)

m=1

From Eq. (27), we can write Eq. (24) as follows

l—q)L[ (D(x,t;q)—uo( ] {Zum X, t } qhH X, t N[CD X t,q)]
m=l1 (29)
L[Zum x,t)q" - qL{Zum x,t)q } ghH  (x ,t N[(D X t,q)]

m=1 m=1

By differentiating (29) m times with respect to q, we obtain
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501 S Y 0 -

m=1 m=1

o N[ D (x ,t;q)]

m!L [um (x ,t)—umfl (x ,t)] =hH, (x ,t)m

aq m-1 |q:0 :
Therefore,
L [um (x ,t)— XM (x N )] =hH, (x 1 )Rm (uw1 (x ,t )), (30)
where,
1 O0"'N [(D(x,t;q)]
R, (w1 (1)) = CE I (31)
and
{0, m<1
x =
"o, m>1

Note that the high-order deformation Eq. (30) is governing the linear operatorL , and the term
canbe R (u - (x ,t )) expressed simply by (31) for any nonlinear operator N.
To obtain the approximation solution of Eq. (1), according to HAM, let

N [ (x.t)] = (x,t)+F(x,t)+;[D (1 (e ) +;[H (1 (x.t )t

S0,
t

R, (umfl (x ,t)) =u,_ (x,0)+F (x ,t)+.[D( o (X51) dt +IH L(x ,t))dt, (32)

0

Substituting (32) into (30)
L [um (x ,t ) = X (x )t )] =hH, (x ,t )[uw1 (x ,t)+ ID (u (x ,t ))dt +
0 (33)

IH ))dt +(1= 2, )F (x.t)].

We take an initial guessu, (x ,t) =—F(x,t) , an auxiliary linear operator Lu =u , a nonzero

auxiliary parameter 7 =—1, and auxiliary function /,(x,¢)=1. This is substituted into (33) to
give the recurrence relation

(x t) :—F(x t) .Scm
34
. ( jD (x,1) dt—J‘H x,t))dt, n=l. G4

Therefore, the solutionu(x, t) becomes

=iun (x,)=—F (x,t) [ [D(u, (x .t dt—_[H t))dt). (35)
n=0
which is the method of successive approxnnatlons. If
‘un (x .t )‘ <1,

then the series solution (35) convergence uniformly.
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5 Existence and convergency of iterative methods

We set,
a=T (L +L,),

B=1-T (1-a), y=1-TLa.

Theorem 3.1
Let0<a <1 , then RLW equation has a unique solution.
Proof

Let u and u” be two different solutions of (3); then

—j([D (u (x ,t))dt —;[H (u (x N ))dt

*
‘M —u

< I‘D (u (x ,t))—D (u* (x ,t))‘dt +.:UH (u (x N ))—H (u* (x N ))‘dt

<T (L, +L2)‘u —u*‘:a‘u —u’|.

From which we get(l—a)‘u —u*‘SO. Since 0<a <1 , then|u —u"|=0. Implies « =u" and

completes the proof.

Theorem 3.2

The series solution u (x,t):Zu,. (x,t) of problem (1) using MADM convergence when

i=0

O<ax<l, <00,

Proof
Denote as(C[/], ||. ) the Banach space of all continuous functions on J with the norm, for all

ul(x,t)

uf (t)H:max‘f(t)‘ t in J. Define the sequence of partial sumss,, let s, and s, be

arbitrary partial sums with n >m . We are going to prove thats, is a Cauchy sequence in this
Banach space:

n

2 ()
—I[HEA[ jdt —jnZiB[dt

i=m 0i=m

Sn _Sm =ma‘theJ Sn _Sm =maxv’te.l

=max ., o,

=max.,_, i (—inldt —]Bildt
0

i=m+1 0
From [6], we have
n—1
ZA[ :D(Sn—l)_D (Sm—l)’

i=m

n-1

ZBI. =H (s,,)—H (s,)-

i=m

So,
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t

vy, [P (5,0)-D (s, —;[[H (5,0 )—H (s, )

0

S, " Sm

n

< ;HD (5,)-D (s, |at -I\H (5,1~ H (s, e

<afs,—s

Let n =m +1; then
<a

| <a’
From the triangle inequality we have
+ |+ s, =5,

m
Sm—l_Sm—2||S.”Sa Sl _S0||

Sn _Sm S _5”171

m

m m+1 n—-m-1
s, =S, S S |S[a +a’ T+t ]”sl—son

m+l1 _Sm m+2 _Sm+1

<a” [1+a +a’ +...+a"7'”71}||s1 —SOH

<ar {1‘“” }uul(x,t)\.

l-a
Since0 <a <1, we have (1-a"™) <1, then

m

a

ul(x,t)

<o, s0, as m — o, then

Sn _Sm”S matheJ

1
But ‘ul (x ,t)

sequence in C[J]; therefore, the series is convergence and the proofis complete.

a

— 0. We conclude that s, is a Cauchy

Sn _Sm

Theorem 3.3

The solutionu, (x,#) obtained from the relation (20) using VIM converges to the exact
solution of the problem (1) whe0<a <1,n and0< <1 .

Proof

t

. (x,t)=u, (x,t)-L; Hun (x,0)+F(x ,t)+.(|).D (u, (x,t))dt +IH (u, (x 1))t })J (36)

u (x ,t) =u (x ,t)—Lt’l([u (x ,t)+F (x ,t).[D (u (x N ))dt + ].H (u (x N )))dt (37)

By subtracting relation (36) from (37),

o (et )= (et ) =u, () —u (x J)—L/'[un (xor)—u(x »’)—![D ( (v.0)) =D (e (x.1)) Jae ‘I[H (1, (et )) = H (u (1 ))}‘”)‘”j»
ifweset, e,,, (x,t)=u,, (x.t)-u,(x,t), e, (x.t)=u,(x,t)-u,(x.t),

e, (x ,t)
mean value theorem we can write,

e, (x ,t*)‘ =max, then since e, is a decreasing function with respect to ¢ from the
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e,.(x.t)=e, (x,t)+L (e, (x.t)+ [ (u (x,t))]dt

+I[H (1, (x.0))~H (u (x,t))]dr)
<e, (x,0)+ L (=e, (x,t)+ L', (x.t)

<e,(x,t)-Te, (x,n)+T (L, +L,)L;'L;

O C—y ™

(L,+L,))
e, (x,1))

<1-T (l—a)‘en (x,t*) ,

where0<7 <t . Hence, ¢, (x,/)< ‘en (x " )‘ .Therefore,

e”|S,B

Since 0 < 8 <1, thene, — 0. So the series converges and the proof'is complete.

e =max ., e, |< Pmax,_, e

n+l n+l nll*

Theorem 3.4

The solutionu, (x ,t ) obtained from the relation (21) using MVIM for the problem (1)
converges when.

O<a<l,0<y<l.

Proof
The Proof'is similar to the previous theorem.

Theorem 3.5

If the series solution (34) of problem (1) using HAM is convergent, then it converges to the
exact solution of the problem (1).

Proof

We assume:

t)=u, (x.0).

m=0

B (u(x.0))= YD (u, (x 1)),

m=0

(1 (x.0)) = 3H (u, (x.1)

m=0

where,
limu, (x,t)=0.

m—»0

We can write,

Zn:[um (x,0) =y, (x ,t)] =u,+(uy—u) )+, —u, ) =u, (x,1). (38)

m=l

Hence, from (38),
limu, (x,t)=0 (39)

n—>0

So using (39) and the definition of the linear operator L, we have


https://ijaor.com/article-1-547-en.html

[ Downloaded from ijaor.com on 2025-12-01 ]

Optimization of Solution Regularized Long-Wave Equation by Using Modified Variational Iteration Method 65

iL [u,, (x.2)=yu,,_, (x,1)] =L[§;1 [, (x.2)= 2,1, (x,2) [1=0.

m=1

therefore, from (30), we can obtain that,

iL[um(x,t — o, (x.t)]=hH, (x .t Z.O:le(m1 1))=0.
m=1

m=1

Since /1 #0 and H (x,t)#0, we have

iRnH (um,1 (x,t )) =0 (40)

m=l

By substituting ZR - ( oo (52 )) into the relation (40) and simplifying it, we have
m=1

['e]

SR, (. (x.1))= Z[umlxt j (w1 (x.1)) dt+jH u,_,(x.t))dt

m=1 m=l

. (41)
+(1= g, ) F (x,0)]=u(x,t)+F (x,t) I (x t))dt+jﬁ (u (x,2))dt.

From (40) and (41), we have
u(x,t)z—F(x,t)—.[lﬁ (u (x,t))dt —Iﬁ (u (x ,t))dt,

therefore, u(x, t) must be the exact solution.

6 Numerical example

In this section, we compute a numerical example, which is solved by the ADM, MADM,
VIM, MVIM, and HAM. The program has been provided with Mathematica 6 according to
the following algorithm, where ¢ is a given positive value.

Algorithm: (ADM, MADM and HAM)

Step 1. Set n < 0.
Step 2. Calculate the recursive relations (10) for ADM, (13) for MADM and (34) for HAM.

Step 3. If |un+1 —-u, | < ¢ ;then go to step 4,
else n «—n+1, and go to step 2.

Step 4. Print u (x,¢)=Yu, (x,t) as the approximate of the exact solution.

i=0
Algorithm: (VIM and MVIM)

Step 1. Set «<— 0 .
Step 2. Calculate the recursive relations (20) for VIM and (21) for MVIM.

Step 3. Ifju
else n «<—n+1, and go to step 2.
Step 4. Print u, (x,¢) as the approximate of the exact solution.

n+l _un
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Example
Consider the RLW equation as follows:
S —u xx*+6ul=0

u,

subject to the initial conditions:
1

u(x,0)= cos? (x)
1
with the exact solution isu (x ,t) = cos? (x —t) .

Fig. 1 The Comparison between the results of the methods in the example 4.1, Green = Error ADM (n=11),
Red = Error MADM (n=9), Black = Error VIM (n=6), Blue = Error MVIM (n=3), Orange= Error HAM (n=5).

Figure 1, shows that, approximate solution of the RLW equation is convergent with 3
iterations by using the MVIM. By comparing the results of Figure 1, we can observe that the
MVIM has more rapid convergence than the ADM, MADM, VIM and HAM.

7 Conclusion

The MVIM has been shown to solve effectively, easily, and accurately a large class of
nonlinear problems with the approximations whose convergence are rapidly to exact
solutions. In this work, the MVIM has been successfully employed to obtain the approximate
analytical solution of the RLW equation.

Acknowledgments

The paper is supported financially by a grant of research project from Islamic Azad
university, Parand branch.

References

1. Benjamin, T. B, Bona, J. L., Mahony, J. J.,(1972). Model equations for long waves in nonlinear dispersive
system. Philos Trans R Soc London, Sera, 27, 47-78.

2. Mica, S., (2001). On the controllability of the linearized Benjamin-Bona-Mahony equation. SIAM.Control
Optim, 39, 1667-1696.

3. Yin, H., Zhao, H., Kim, J., (2008). Convergence rates of solutions forward boundary layer solutions of
generalized Benjamin-Bona-Mahony equations in the half-space. J: Differential Equations, 245, 3144-3216.

4. Abbasbandy, S., Shirzadi, A., (2009). The first integral method for modified Benjamin-Bona-Mahony


https://ijaor.com/article-1-547-en.html

[ Downloaded from ijaor.com on 2025-12-01 ]

Optimization of Solution Regularized Long-Wave Equation by Using Modified Variational Iteration Method 67

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

equation. Commun Nonlinear Sci Numer Simulat, In press.

Celebi, A. O., Kalantarov, V. H., Polat, M., (1999). Attractors for the generalized Benjamin-Bona-Mahony
equation. Journal of Differential Equations, 157, 439-451.

El-Kalla, I. L., (2008). Convergence of the Adomian method applied to a class of nonlinear integral
equations. Appl. Math. Comput, 21, 372-376.

Khiari, N., Omrani, K., (2006). On the convergence of difference scheme for the Benjamin-Bona-Mahony
equation. Appl.Math.Comput, 182, 999-1005.

Wahlbin, L., (1975). Error estimates for a Galerkin method for a class of model equations for long waves.
Numer.Math, 23, 289-303.

Zhao, X., Xu, W., (2007). Travelling wave solutions for a class of the generalized Benjamin-Bona-Mahony
equations. Appl. Math. Comput, 192, 507-519.

Raupp, M. A., (1975). Galerkin methods applied to the Benjamin-Bona-Mahony equation. Bol. Soc. Brasil.
Mat, 6, 65-77.

Zhao, W., Xu, W., Li, Sh., Shen, J., (2006). Bifurcations of traveling wave solutions for a class of the
generalized Benjamin-Bona-Mahony equation. Appl. Math. Comput, 175, 1760-1774.

Wazwaz, A. M., (2005). Exact solutions with compact and noncompact structures for the one-dimensional
generalized Benjamin-Bona-Mahony equation. Communications in Nonlinear Science and Numerical
Simulation, 10, 855-867.

Limaco, J., Clark, H. R., Medeiros, L. A., (2007). Remarks on equations of Benjamin-Bona-Mahony type.
J. Math. Anal. Appl, 328, 1117-1140.

Zeng, L., (2003). Existence and stability of solitary-wave solutions of quations of Benjamin-Bona-Mahony
type. Differential Equations, 188, 1-32.

Wang, B., (2009). Random attractors for the stochastic Benjamin-Bona-Mahony equation on unbounded
domains. J. Diffrential Equations, 246, 2506-2537.

Fang, Sh, Guo, B., (2008).The decay rates of solutions of generalized Benjamin-Bona-Mahony equations in
multi-dimensions. Nonlinear Analysis, 69, 2230-2235.

Song, M., Yang, Ch., Zhang, B., (2009). Exact solitary wave solutions of the Kudomtsov-Petviashvili-
Benjamin-Bona-Mahony equation. Appl. Math. Comput, In press.

Limaco, J., Clark, H. R., Medeiros, L. A., (2004).On equations of Benjamin-Bona-Mahony type. Nonlinear
Analysis, 59, 1243-1265.

He, J. H., Wu, X. H., (2006).Exp-function method for nonlinear wave equations. Chaos, Solitons and
Fractals, 30, 700-708.

Yusufoglu, E., (2008). New solitonary solutions for the modified Benjamin-Bona-Mahony equations using
Exp-function method. Phys. Lett. A., 372, 442-464.

Omrani, K., (2006). The convergence of fully discrete Galerkin approximations for the Benjamin-Bona-
Mahony equation. Appl. Math. Comput, 180, 614-621.

Ganji, D. D., Babazadeh, H., Jalaei, M. H., Tashakkorian, H., (2008). Application of He's variational
iteration method for solving nonlinear Benjamin-Bona-Mahony-Burgers equations and free vibration of
systems. Acta Applicandae Mathematica: An International Survey Journal on Applying Mathematics and
Mathematical Applications, 106, 359-367.

Ye, Y. H., Mo, L. F, (2009). He's variational method for the Benjamin-Bona-Mahony equation and
Kawahara equation. Comput and Math with Appl, In press.

Tari, H., Ganji, D. D., (2007). Approximate explicit solutions of nonlinear Benjamin-Bona-Mahony-Burgers
equations by He's methods and cpmparison with the exact solution. Phys. Lett. A, 367, 95-101.

Yusufoglu, E., Bekri, A., (2007). The variational iteration method for solitary patterns solutions of
generalized Benjamin-Bona-Mahony equation. Phys. Lett. A, 367, 461-464.

Abbasbandy, S., (2008). Homptopy analysis method for generalized Benjamin-Bona-Mahony equation.
Zeitschriff fur angewandte Mathematik und Physik (ZAMP), 59, 51-62.

Behriy, S. H., Hashish, H., E-Kalla, I. L., Elsaid, A., (2007). A new algorithm for the decomposition
solution of nonlinear differential equations, Appl. Math.Comput, 54, 459-466.

Fariborzi Araghi, M. A., Sadigh Behzadi, Sh., (2009). Solving nonlinear Volterra-Fredholm integral
differential equations using the modified Adomian decomposition method. Comput. Methods in Appl. Math,
9, 1-11.

Wazwaz, A. M., (2001). Construction of solitary wave solution and rational solutions for the KdV equation
by ADM. Chaos, Solution and fractals, 12, 2283-2293.

Wazwaz, A. M., (1997). A first course in integral equations. WSPC, New Jersey.

El-Kalla, I. L., (2008). Convergence of the Adomian method applied to a class of nonlinear integral
equations. Appl. Math. Comput, 21, 372-376.


https://ijaor.com/article-1-547-en.html

[ Downloaded from ijaor.com on 2025-12-01 ]

68

32.

33.

34.

35.

36.

37.

38.

T. Allahviranloo and Sh. Sadigh Behzadi, / IJAOR Vol. 7, No. 2, 55-68, Springer 2017 (Serial #24)

He, J. H., (2004). Variational principle for some nonlinear partial differential equations with variable
cofficients. Chaos, Solitons, Fractals, 19, 847-851.

He, J. H.,, (2007). Variational iteration method some recent results and new interpretations, J. Comp. and
Appl. Math., 207, 3-17.

Abassy, T. A., El-Tawil, Zoheiry, H. E, (2007). Toward a modified variational iteration method (MVIM) . J.
Comput. Apll. Math, 207, 137-147.

Abassy, T. A., El-Tawil, Zoheiry, H. E.,(2007). Modified variational iteration method for Boussinesq
equation. Comput. Math. Appl, 54, 955-956.

Mohyud-DinS, T., Noor, M. A., (2008). Modified variational iteration method for solving Fisher's
equations. J. Comput. Apll. Math.

Liao, S. J., (2003). Beyond Perturbation: Introduction to the Homotopy Analysis Method. Chapman and
Hall/CRC Press, Boca Raton.

Liao, S. J., (2009). Notes on the homotopy analysis method: some definitions and theorems, Communication
in Nonlinear Science and Numerical Simulation, 14, 983-997.


https://ijaor.com/article-1-547-en.html
http://www.tcpdf.org

