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Abstract In this paper, we propose a new fixed point model for the linear complementarity problem
(LCP). The equivalent of this model and LCP has been proved. The structure of this model is simple
and can be applied to iterative methods for LCPs and also other complementarity problems.
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1 Introduction

For a given real vector gqeR"and a given matrix AeR™" the linear complementarity
problem abbreviated as LCP (A, q), consists in finding vectors z € R" such that

w =Az —q

z>0w >0 @

z'w =0

where z" denotes the transpose of the vectorz. Many problems in various scientific
computing, economics and engineering areas can lead to the solution of LCP and its
generalizations. For example, quadratic programming, Nash equilibrium point of a bimatrix
game, nonlinear obstacle problems, invariant capital stock, optimal stopping, contact and
structural mechanics, free boundary problem for journal bearings, traffic equilibriums,
manufacturing systems, etc. For more details, see [1-3] and the references therein. Because of
the wide applications, the research on the numerical methods for solving (1) has attracted
much attention.

Numerous methods exist for solving the linear complementarity problems (LCPs).
Numerical algorithms to solve Eq. (1) fall in two main classes, direct and iterative. Direct
methods are those based on the process of pivoting, that is, exchanging the roles of dependent
and independent variables (similar to basic and non-basic variables in a system of equations),
while iterative methods are those which produce a (possibly infinite) sequence of iterates
(trial solutions) which converge to a solution [1-3].

One of the oldest iterative methods related to the linear complementarity problem is due
to Hildreth [4], who designed the procedure to solve a strictly convex quadratic program.
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Hildreth stated its Kuhn-Tucker conditions and used the nonsingularity of the Hessian matrix
of the objective function to eliminate the primal variables. What remains after this operation
is a linear complementarity problem in variables are Lagrange multipliers and the matrix A is
symmetric and positive semi-definite. A more general iterative method, attributed to
Christopherson [5], has been analyzed and clarified by Cryer [6-7], and it is often cited as
Cryer's method. It is a successive over-relaxation (SOR) method proposed for the solution of
the free-boundary problem for journal bearings; see also [8-9].

Generally, there are some iterative methods for the solution of the LCP, including the
projected methods [10-23], the modulus algorithms [24-26] and the modulus-based matrix
splitting iterative methods [27-32], see [33] for a survey of the solvers for LCP (1).

In this paper, we study all the fixed point models for linear complementarity problems
(LCPs) and present a new model. Finally, we prove the equivalent of the LCP and our fixed-
point model.

2 The existing fixed-point models

In this section, we study the existing fixed-point model for the LCP.

2.1 Projected fixed-point model

Let us consider LCP (1). LCP(A,q) is equivalent to the following zero-finding formulation;
min(z,(Az —q))=0. 2

And the zero-finding formulation is equivalent to the following fixed-point formulation;
max(0,z —(Az —q))=z. (3)

This fixed point model used in some iterative methods for LCPs called the projected iterative
methods [10-23]. We describe shortly this class of iterative methods.

For any iteration we have the following splitting;
A=M —-N,
then from Eg. (3):

maX(O,Z k+l_(MZ k+l_NZ k _q)) =7 k+1.

We know that, if (z**—(Mz**—Nz* —q)), <0thenz,“" =0, otherwise
(z“" —(Mz " —Nz* -q)), =Zik+l’
:Zikﬂ—(MZkH—NZk—q)i :Zikﬂ,
=Mz, =Nz,“ + (@), = (@), +(M -A)z,"),
=Mz "t =(Mz" -(Az* -q)),.

Now, for example, if
M =D -L,

where D,L are diagonal, strictly lower triangular parts of A, in order to solve LCP(A,q), we
have,
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(D _I-)Zik+1 =((D _L)Zk _(Azk _Q))i-
=Dz;**=(D-L)z,* - (Az* -q), +Lz,"".
=z " =z*-(D)'Lz,* -(D)*(Az* -q), +(D)*"Lz,*™.

Therefore, we get the following formula of the projective iterative method:
2" =max(0,z* —(D) (A +L)z* —Lz**" —q)).

2.2 Modulus fixed-point model

Modulus fixed-point model was introduced by Van Bokhoven [24] as follows:

If 1+A is nonsingular, then the LCP (1) is equivalent to the fixed point problem of
determining x eR" satisfying

x =f ()= +A)"(I —A)|x|+( +A)"q. 4)

More precisely (see the proof of Theorem 9.1 in [1]), if X is a solution of (4), then
w=|x|-x, z=[x|+x.

Define a solution of (1). On the other hand, if w,z solve (1), then x :%(z -w) is a solution of
(4). This model was extended by Dong and Jiang [26] to the modified modulus algorithms:
{x =f (x)=(al +A) (al —A)[x|+(al +A)™q,

aeR.

then,
W =a(x|-x), z=|x|+x.

()

After that, Bai [27] combined the modulus algorithms with the classical iterative methods as
follows:

By taking w =9(|x|—x), z =l(|x|+x) and A=M —-N, the LCP(A,q)can be equivalently
Y Y

transformed into a system of the following fixed-point equations:

x =f (x)=(Q+M ) (Nx +(Q-A) x|+ ). (6)

where Q is a positive diagonal parameter matrix and » is a positive constant. His work
followed by a number of researchers in [28-32].

3 A new fixed point model for LCPs

In this section, we will establish a new fixed point model for LCP (1). By definitions of
(x;). =max{ox;} and (x;) = min{ox;} the LCP (1) is equivalent to the fixed point

i)-
problem of determining z eR" satisfying
z=f(@z)=z+@q-Az),-z" (-Az)._. (7)

In the following theorems, we prove an equivalent fixed-point equations (7) and the LCP (1).
Theorem 1. Given the fixed-point model (7), and z >0. Then z is the solution of LCP (1).
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Proof. Let z >0. If (q—Az), >0, then from Eq.(7) we get:
z, +((@-Az),), -z, x(0)=z;.
Therefore,
z.+(q-Az), =z,. 8
>0
We can see that the Eq. (8) has no solution. This means that when z, >0 and (Az -q), <0 the
LCP (1) is not held.
If (q—Az), <0,then from Eq. (7) we obtain:

2, =2, +(Q-Az).), - (@-Az)),

=0

=2, -2 (q-A2)),.

Since in LCP, z" (Az —q) =0, then:
z,=2,-(2" @-A2)), =2,.
=
If (@-Az), =0,then from Eq. (7) we have:
Z; +((q-Az )+)i _(ZT (a-Az )—)i =z, +0-0=z,

Thus, the proof is completed.

Theorem 2. If z" be the solution of LCP (1), then z" =f (z7).

Proof. Let z "~ is the solution of LCP (1), i.e,

Az"-q=0, z >0,and z7 (Az"-q)=0.

So, when (Az”—q), >0, then from above LCP we have

@) =0 9)
Also, by Eq. (7):

(f (z *))i =(z *)i +((q—Az *)+)i (27 (q-Az *)—)i
=(Z *)i +0_(Z T (q —-Az *)—)i
=(27); +0-0=(z");.

Then by Eq. (9) we get:
@) =@ =0

Now, when (Az" —q), =0, then:
@ =@)+(@-Az"),) -7 (@-Az"))),

:(Z *)i +O_(Z*T (q —-Az *)—)i
=(z27); +0-0=(z"),.
Thus, the proof is completed.

By two above theorems, we can conclude that the LCP (1) is equivalent to the fixed point
model of (7).
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