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Abstract Interavl type-2 fuzzy numbers (IT2FNs) are used in many real problems such as multiple
attribute decision making (MADM) problems, to model the opinions/judgments of experts. This paper,
using centroid points and uncertainty degrees of IT2FNs, presents a new method to rank them. Also,
we present new methods based on Choquet integral and various types of Power average to aggregate a
set of IT2FNs into a single one, separately. Finally, a new way is suggested to determine the
importance degree of each criterion or decision maker in decision making problems. As an application,
these methods will be applied to solve a group decision making problem.
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1 Introduction

Vagueness, ambiguity, and uncertainty are inseparable part of information which is resulted
from human judgments or expressed by linguistic terms. Use of such information in many
sciences such as Control, Robotic, Decision Making, etc., requires scientific modeling. For
example, type-1 and type-2 Fuzzy Sets (T1FSs, T2FSs) [1, 2] have been proposed to model
uncertain data. Because of computational complexity of T2FSs the authors are interested to
apply Interval T2FSs (IT2FSs), i.e. a simplified form of T2FSs in which, their membership
grades are subintervals from [0,1]. To date, there are many studies on T2FSs and IT2FSs
theories [3-6, 7, 8, 9]. KM Algorithm proposed by Karnik and Mendel [10], to compute the
centroid of an IT2FS. The centroid of an IT2FS measures the uncertainty, its properties
presented in [5]. Wu et al. [11] proposed another method to compute the centroid of a T2FS.
Set operations of T2FSs, i.e. union, intersection and, complement, without using the
Extension Principle has been introduced by Mendel and John [12]. Cardinality, fuzziness,
variance and skewness are four characteristic of IT2FSs, which are proposed by Mendel and
Wu [3,9], to measure their uncertainty. Uncertainty degree of symmetric IT2FSs [13], the
computation of all different uncertainty measures [14], « -cuts and « -planes of T2FSs [15, 8,
16], arithmetic operations between the trapezoidal IT2FSs [17, 18], ranking order of IT2FNs

* Corresponding Author. (D<)
E-mail: hmnehi@hamoon.usb.ac.ir (H. Mishmast Nehi)

A. Keikha
Ph.D of Applied Mathematics, Zahedan, Iran

H. Mishmast Nehi
Department of Mathematics, University of Siastan and Baluchestan, Zahedan, Iran


mailto:hmnehi@hamoon.usb.ac.ir
https://ijaor.com/article-1-571-en.html

[ Downloaded from ijaor.com on 2025-10-23 ]

2 A. Keikha and H. Mishmast Nehi / IJAOR Vol. 8, No. 1, 1-21, Winter 2018 (Serial #27)

and their applications in solving fuzzy multiple attributes group decision making (FMAGDM)
problems [17, 18, 19-21, 22] are some other researches that have been done about T2FSs.

Choquet integral (CI) as a more useful aggregation function, is applied to solve MADM
problems [23, 24, 25, 26]. For example, to aggregate IT2FNs by CI, based on the concepts of
fuzzy CI, interval-valued CI, and the definition of IT2FSs, which are constructed by infinite
embedded type-1 fuzzy sets, a new method has been proposed by Havens et al. [27]. The
other aggregation function, which is considered in this paper, proposed by Yager [28], is
power average (PA) operator. Through this operator, the values are able to support each other
or interact together and it is caused to the resulted value is more compliant with reality. It is
extended to different kinds, including power weighted average operator (PWA), power
ordered weighted average operator (POWA), power hybrid average operators (PHA), power
geometric operator (PGA), power geometric weighted average (PGWA) and power ordered
weighted geometric (POWG) operator [28, 29]. It has been, also generalized by Wan et al.
[30, 31] to deal with intuitionistic fuzzy numbers. The rest of this paper is organized as
follows:

In section 2, we will review some concepts which are necessary in other sections.
Section 3 presents a new ranking method for IT2FSs. Cl and PA operator will be used to
aggregate a set of IT2FSs is Sections 4 and 5, respectively. Section 6 proposed a new way to
determine the importance degree of decision makers or criteria. Sections 7 and 8 are dedicated
to the application of these new concepts to MAGDM problems and a numerical example,
respectively. The paper will be concluded in Section 9.

2 Some required definitions and preface

Let X be a reference set, a type-1 fuzzy subset of X namely A is defined by the
membership function (MF) w, : X —[0,1] where, u,(X) vxe X, expresses the membership

degree of the element x in A, i.e.

A={(x 1, () [ xe X }.

The centroid point of type-1 fuzzy numbers (T1FNS) is an important property, which may
be used to rank such numbers. Suppose A= (a,a,,85,8,;W,) beaT1TrFN. Its centroid point
is determined as follows [32]:

io:%[a1+a2+a3+a4— & 4% 4y :%l %%

Gra)-@ra)y T mra)-@ra)

Then, R(A) = x,.y, is called the ranking order of A.

Definition 2.1 [4] Let X be a universal set, xe X and, ueJ, <[0,1], then,
A={((x.U), 4; (x,U)) | ¥x € X, Vu e J, <[0,4},

is called a T2FS in which, 0< yz\(x,u) <1 and it is a type-2 membership function.
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From here onwards, for simplicity, we apply A rather than A to display a T2FS, and we use
a particular case of T2FS, called IT2FSs, where V(x,u) z;(x,u) =1, i.e.

A= J.XEXJ.UEJX]-/ (x,u)= J.XEX[LeJXl/ ul/x,

J, <[0,1] is primary membership of x and I ; 1/u is the secondary membership function
(MF) at x [33].

As we see, in an IT2FS, the secondary membership function doesn’t have any more
information about uncertainty because the secondary grades for all x € X are equal 1. Then it
is suitable to omit the 3rd dimension of IT2FSs (Fig. 1). For each IT2FS A the union of all its
primary memberships is called footprint of uncertainty of A (FOU( A)), i.e,
FOU(A) =(J,_J, (the shaded region in Fig. 1).

Au o
[ — A4 /—1,(\)

e

0 FOU(A)
Fig. 1 Fuzzy sets

For each IT2FS A its FOU is a bounded region. The upper bound, denoted by ;(x) for
all xe X, is called the upper membership function (UMF) and the lower membership
function (LMF) is the lower bound of FOU which is displayed by /_JA(X), for all xe X.
UMF and LMF are both T1FSs and between them, there are infinite T1FSs that are called
embedded T1FSs, displayed by A,. When the UMF and LMF are trapezoidal /triangular the

IT2FS is called trapezoidal/triangular, IT2FS (TrIT2FS/TIT2FS). Fig. 2 shows a TrIT2FS A,
presented by [34]

A= (A A= ((@,85,85 a0 s HL(AY), Hy(A)), (af,a;,85,8, H(A%), H,(AY))

Hll‘f‘ll'l ————— T~

Hy(AY -~ o
H:(AI.)____/____éﬁ |
HAL ™77 P\
' [
| o
; . > X

0

a uiaey oy asas dl
Fig. 2 TriT2Fs A=(AY, A")

The arithmetic operations between TrIT2FSs have been defined as follows [17,18,34]:


https://ijaor.com/article-1-571-en.html

[ Downloaded from ijaor.com on 2025-10-23 ]

4 A. Keikha and H. Mishmast Nehi / IJAOR Vol. 8, No. 1, 1-21, Winter 2018 (Serial #27)

Definition 2.2 Let

B, = (BY,BY) = (b b.b3 b H,(BY). H, (B)), (bL.bl bbbt H, (B),
H,(B"))) (i=1,2)
be two TrIT2FSs. Then
i) B,®B, =(B,B)®(B; ,B;) =
((byy +Dz, by + b, bi; +by, by +by;min(H, (B)), H(B,')), min(H,(B;"), H,(B;))),
by; + by, by, + by, b5+ by, by + by min(H, (B)), H, (B)), min(H,(By), H, (B,))),

i) B,oB,=(B’,B")o(B),B;)=
<(b1U1 _bgmbluz —bg3,b1U3 _bgz’blli _bgl; min(H1(Blu ), Hl(B;J )), min(Hz(Blu)’ Hz(B;J ))),
(blLl _b2L4'b1L2 _szsi blLs _bzl_z’bllzt _bZLl; min(Hl(BlL)’ H1(BzL))| min(Hz(BlL)r Hz(BzL))»,

iii) B,®B, =(B,B)®(B;,B;) =
(o b3y, by x by, bl x by, by x by, min(H, (B ), H, (By)), min(H,(BY’), H, (B} ))),
(bl xbg;, by x by, b x by, by, x by, smin(H, (BL), H, (By)), min(H, (B), H,(B;)))),

iv) kB, = ((kxblj, kxby), kxby, kxby;H, (BY), H, (BY)),
kx (b, kxby, kxbj, kxb;;H,(B),H,(B}))), wherek>0.

In many real applications of IT2FSs, it is necessary to compare them. The first method for
ranking of T2FSs was introduced by Mitchell [35], then, Wu and Mendel [36] offered a
centroid based ranking method. Also, we can see some other methods to rank TrIT2FSs in
[17, 34, 19].

Let A=(A",A")=((a.a;,a; ,a i Hy(A"), H,(A")), (af a5, 85, a5 H, (A"), H,(AY)) be a
TrIT2FS its ranking value represented by Rank (A), is defined as [37]:
Rank(A) = M, (A”) + M, (A") + M, (A”) + M, (A") + M, (A”) + M, (A") —%(Sl(AU) +

S, (A7) +S, (A7) +S,(A") + S, (A7) +S,(A") +S,(A”)
+8,(A")) + H (A”) +H, (A7) + H (A7) + H,(A"),
where, for je{U,L}

q+1 gq+1

M, (A')=(al+al,)/2,1<p<3, S, (A")= \/%Z(akj —%Zak")z,lgq <3
k=q k=q

and
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i 13 i 15 )2
S,(A’) = EZ(ak _Ezak) -
k=1 k=1

Centroid, cardinality, fuzziness, variance, and skewness are five uncertainty measures for
IT2FSs, which have been defined in [33]. Li et al. [38] considered a symmetrical TrIT2FS A
as in fig. 3, a general case with six parameters (a,b,c,d,m,h). Then, its uncertainty degree

p; Is

pA:1_2b(a—c)—(a+(2:)(b—d)h+2ab(b—d)h—b23(a—c)In(l_hﬂ)
(b—d) h(b—d) b
A
ke
<—d—
——a—m >
e —3

Fig. 3 Symmetrical TrIT2FS

To solve decision-making problems, each object must be evaluated from different
aspects, called criteria or attribute, and then aggregate them to an amount. One of the most
useful aggregation functions is CI, which enables scientists to consider the weight/importance
of each group of criteria in aggregation process [26, 39]. Obtaining measure of each non-
empty set of attributes, while we know each one’s weight, has been explained by Tzeng and

Huang [26].

Definition 2.3 [39] Suppose X ={X;,X,,..., X, } be the reference set with the power set P(X),

f be a function on X with values f, f,,..., f., and x be a monotone measure on P(X),
then

CILVEDYLAELIN PICHERES )

where, f. =0 and {1,2°,...,n'} is a permutation of {1,2,...,n} such that
f.<f,.<.<°f..
1 2 n

Also, Yager [28] introduced power average (PA) operator, as follows:

Definition 2.4 Let u,,U,,...,u, be a collection of values to be aggregated, then

n

2 AT (),

PA(u,,U,,...,u,) = 1= ,

D A+T ()

i=1

where,
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T(u)= leupp(ui’uj)1
=
J#i
and Supp(u,v) is called support function, denoted the support of values u and v of each
other and satisfied in the following three properties:
1)Supp(u, V) = Supp(v,u);
2)Supp(u,v) €[0,1];
3) If | x—y|<lu—v|, then Supp(u,Vv) < Supp(X, Y);

3 A new ranking method for TrIT2FSs

In this section, we extend the proposed ranking method for T1FNs by Wang et al. [32]. Then,
we update the expressed formula for computing uncertainty degree of general TrIT2FSs.
Finally, a new method which is constructed from previous sense, is introduced to rank
TrIT2FSs.

Definition 3.1 Suppose U = (u,,U,,U;,U,;W,) and V = (V,,V,,V,,V,;W,) be TLTrFNs in which
(Xou+ You) @nd (X, Yo,) are their centroid points respectively, then:

i) If X, > Xy, (Xou <X ) then U =V (U <V),

i) If X, =Xy, and Yy, = Yo, then U =V,

i) If X, =X, then, U =V (U <V ) is resulted from Y, > Vo, (Yo, < Yoo )-
Definition 3.2 (i) Suppose U = (U, U,,u,,u,;h,,h,,) and V = (v,,v,,v,,v,; b, h,,) be
T1TrENs, Euclidean distance (d,) and Hamming distance (d,, ) between them have been
defined as follows:

de (lj ,\}) = %[(ul _Vl)

2 2

+(u4 _V4)2 +max{|hlu —h1v|,|h2u _h2v|}]’

+(u, _V2)2 +(Us —V;)

S
d,U,V) =Z[|u1—vl|+|u2 — V| [uy = V3| + |u, =, |+ max {|h, —h,[,]h,, —h2V|}];

(i) Let A=(AY, A') and B = (BY,B") be TrIT2FNs. Euclidean distance (d,) and Hamming
distance (d, ) between them have been defined as follows:

dh(A, éj:zdh(AU B")+(-A)d, (A",B")

de(A, é):ide(AU B )+(1-2)d, (A",B")

where, 1 €(0,1) and determined by decision maker.

Uncertainty degree’s formula that is introduced by Li et al. [38], is specialized only for
symmetric TrIT2FSs. Based on the definition of uncertainty measure, we can get a similar
formula for generalized TrIT2FSs. For each « <[0,1], the related uncertainty degree
A, |

I.e., p;(a), is defined as p;(a) =1- U |,Where,
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A=((a’,a),a’,a’;1,1),(a",a;,ar,ak;h,h)) and |.| is a measure such as Lebuge measure
(fig. 5).

1 ” !_14( X )

Fig. 4 o -cut of TrIT2FS A
Then, using

L

a4—af—(a:—a;+a;—a;>%

de,

1 h
= | 20p; ()da =1—| 2a
O e e e
we can obtain a generalized formula to compute uncertainty degree of each TrIT2FS:

2n_1 mh mh
R e e G LR e I FEE
gh "2 g n qaq n p
where, m=a; —a ,n=a; -a. +a, -a,,p=a; —-a’,q=a; —a;, +a; —a, .
Now, we are ready to propose an algorithm for ranking TrIT2FSs.

A new ranking algorithm

As we know, a TrIT2FS is displayed by its FOU which is bounded by UMF and LMF. These
bounds are trapezoidal T1FNs. Let A= (Ko ) and B= (Mg, fg) be two IT2FSs. Suppose

that z; and u; be the upper membership functions of their FOU s, respectively. Likewise,
their lower membership functions are displayed by My and My A and B are compared
through the following steps:

Step one: Pick ;A and ;é which are T1FSs and compare them using the proposed methods

for T1FSs (Def. 3.1). The greater one shows that the corresponding IT2FS is larger and if they
are equal go to step two.

Step two: Get the lower membership functions of IT2FSs and compare them using Def. 3.1.
Ranking of given IT2FSs are like to their LMF’s ranking if they aren’t equal, and then go to
Step three.

Step three: Compute the uncertainty degrees of given IT2FSs using Eq. 1. The greater one has

a small uncertainty degree, else, the IT2FSs A and B are equal.
The above algorithm has some properties, which may be proved as follows.

Theorem 1. For TrIT2FSs A,B and C,
1) If A=B and A<B,then A~ B;
2) If A=B and B=C, then A>C;
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3) If A=B, then A+C = B+C;
where, = means larger than or equal in the sense of ranking and ~ means the same ranking.
Proof Proving 1) and 2) are easy, we prove only 3).

Let A= B. If this ranking order is obtained from the ranking order of their UMFs or LMFs,

then from ranking order’s properties of T1FSs, we derive that A+C>=B+C. If the ranking

order of their UMFs and LMFs are equal and p; < p; . Itis easy to see that
2 A+(;] [2 h? + (pAJrC _ mA+C )h pA+C (pA+C _ mA+éh)|n |1_ qA+(§ h |],
n

Qi.c AiC Uic Yac AiC AiC

Pie =
qA+C

where,
L

— : — Al L L L L L
h=min{h;,h.}, m; . =a,—a +c,—c, n; .=a,—a;+a, —a, +C; —C; +C,
— ;U U U — U U U U u V]
Pic =2, —a& +C, —C , Uz, =a, —a +a, —a  +C; —C; +C, ;.
Similarly,

_ ClL ’

Ps.c =1— 2n B+C [ h2 (p|§+c~ _ mB+c )h+ pB+C (pB+C m§+éh)|n|1_ qé+é hl]’
qB+Ch 2 B+C B+C qB+C B+C B+C B+C
where,
h=min{h;,h.}, m, .=a;—a +c,—C, N, .=a, —a;+a, —a +C; —C; +C, —Cy,

Pac =& —& +C, _C1 , Og.c =8, —@; +a; —a +C; —C; +C) —¢y .

As we can see, the explained parameters to compute uncertainty degrees of A+C and B+C
are the resulting of the same shift in their related parameters of A and B. Then, from
Pi < ps, we conclude that p; - < p; <.

The following subdivision shows contrast examples between Chen 2010 [3], Chen 2012 [1]
and the proposed method.

3.1 Comparison examples

We compare the proposed method with other existing ranking methods through the following
examples.

Example 3.1 Let A=((1,5,6,10;1),(4,5,6,7;1))and B =((2,5,6,9;1),(3,5,6,8;1)) be TrIT2FSs
(Fig. 6).

Based on Chen’s method [34], A< B, the proposed ranking method in [17] resulted that
A= B. Comparing them by the proposed algorithm in this article, gives A< B because
Pg < Pi-

Fig. 5 TriT2FS A and B
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Example 3.2 Suppose A=((1,4,5.75;1),(3,4.25,5;.8)) and B =((1,4,5.75;1),(2,3.6,5;.7)).

Fig. 6 TIT2FS A and B

As we can see (Fig. 7), their UMFs are equal based on the ranking order of their LMFs, we
obtain A> B. It is similar to what determined using the proposed methods in [17, 34].
Example 3.3 Suppose A=((0,4,8:1),(2,4,6;.9)) and B=((1,4,7;1),(3,4,5;.9)) . According
to our proposed method, their centroid points are the same, but, A has a larger uncertainty
degree than B, then A< B. This ranking order is like to what obtained from [17], and is
opposite with [22]. We believe A< B is more reasonable than A> B, because A is only,
more uncertain than B .

4 Aggregation IT2FSs using CI

Application of Cl in aggregation process of IT2FSs will be argued in this section.
Definition 4.1 Consider X ={X,X,,..., X.} with power set P(X) be the reference set, f be

f . and define a monotone measure 4 on P(X)

=y Ino

an IT2FS-valued functionon X as fl f;,.
then,

CILVED Y (LA V(RS )}

where, fo*:<(O’O’O’O;1)'(O’O'O'O;l»”u({xi*’X(i+1)*’"’Xn*}) is joint measure of

{xi*,x(m)*,.., xn*} and {xl*,xz*,..., xn*} is a permutation of {x, X,,..., X, } such that
f.<f.<.<f..
1 2 n

The output of ClI in Def. 4.1 is an IT2FS and then, its FOU, which is denoted by
FOU(CI f), is a bounded region. Due to the lexicographic ranking method, its UMF is the ClI

of UMFs of ﬁ,i =1,2,---n, but its LMF isn’t necessary, the Choquet integral of LMFs.
Indeed, they are created from UMFs and LMFs of f~(xi),i =1,2,---n, respectively, using the
Def. 4.1. This is because, there may be some IT2FSs such as fl and f~(i+1)* with conditions

UMF(fi,,)<UMF(f(M)*) and LMF(fi,,)>LMF(f~(i+l)*). Then, f < f(iﬂ)* and this ranking

order is used to compute CI of UMFs of ﬁ,(i =1,2,---n), independently, but to obtain the ClI
of LMFs of ﬁ,(i =1,2,---n), separately, the proposed ranking order for IT2FSs isn’t
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applicable. If ﬁ,(i =1,2,---n), are ranked only based on their uncertainty degrees, then the

UMF and LMF of FOU(CIf) are the ClI of UMFs and LMFs of ﬁ,(i:1,2,---n),

respectively.

It should be noted that with respect to the above Definition, we can use the computed
values from CI in other processes, easily. Also, ClI of IT2FNs has properties that are
mentioned in Section two for CI in general. In the following theorem, we will consider only
monotonicity property of Cl, the other one can be obtained easily.

Theorem 2. Let f and § be two IT2FSs-valued functions on X ={X,X,,...X }, with

fls 0, fz <G,y ~n <§, i.e. f<g. Then, for each monotone measure x on P(X), we
have:

(©)ffdxe<(C) [l .
Proof. Suppose z{x} for i=1,2,---,n are given. Then, we can compute the measure of
each element of P(X). Without loss of generality, let fl < fz <..< fn , We have
(©)ffd g = x[1fX3= 1, X+ X F1+ XL, g, X 3= g, o, X H+
ot Fox [ 3= e, 31,
where, z{x,.,}=0. In the other hand, we know that f, <§,, f,<,,..., f, <§, . Therefore,
o [a{X = 0 X, X F1+ By X LatfXg X, oo X 3= o X H
o fox L) 3= e, 31 < G < [ XY= 1 X, X, T+

gz X[/U{Xz’ X3! T Xn}—,U{X3, T Xn}] +eeet g~n X[ﬂ{xn}_ﬂ{xnﬂ}]-
Thus, we obtain

(©)ffdu < (C)gd s
5 PA operator of IT2FNs

Aggregation process of IT2FNs using PA operator will be argued in this section.

5.1 A new method to aggregate IT2FNs based on PA operator
Definition 5.1 Let A,i =1,2,---,n(n>3) be IT2FNSs, the PA of them is defined as follows:

o IasTANA)
PAIT2FN(A,A,,..., A ) = 12 —
Y(1+T(A))

i=1

where, T(A) =Y Supp(A,A,) and for each i, j, Supp(A,A,) is the support of two IT2FN,
=1
i

satisfying in the following properties:
1)Supp(A, A)) = Supp(A;, A);
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2)Supp(A, A)) €[0,1];
3) If d,(A,A)<d,(A,,A) then Supp(A,A)>Supp(A,,A), where d, is the Hamming
distance as in Def. 3.2 that can be replaced by d, (Euclidean distance).
In the following theorem, we’ll show that the PAIT2FN(A,A,,...,A) has the mentioned

properties of PA operator:
Theorem 3. Suppose A,i =1,2,---,n(n>3) to be INT2FNs which their power average is

denoted by PAIT2FN(A,A,,...,A) then,
1) PA operator is bounded, i.e.
min(A, A,,...,A)<PAIT2FN(A, A,,...,A)<max(A,A,,....A);

2) If for each i = j we had Supp(A, Aj) =k then, PA converted to arithmetic average, i.e.

DY
PAIT2FN (A, A,,..., A)) = 12—;

n

3) PA is idempotent i.e.
PAIT2FN(AA,..., A) = A
4) Let {’5‘1*’ '5‘2*""’ An*} be a permutation of {A, A,,..., A}, then
PAIT2FN(A1*,A2*,...,AH*) = PAIT2FN(A,A,,...,A).
Proof.
1) Let A. =min(A,A,,...,A), A. =max(A, A,,...,A) and w, :n“&. It is easy to
D (1+T(A))
i=1
see that PAIT2FN(A,A,,...,A)=> WA, Yw =1 and w >0,(i=1,2,---,n). In the other

i=1 i=1

hand Al S’E‘i* SAn,, for (i=1,2,---,n), then

A. =D WA <> WA =PAIT2FN(A,A,,.. . A)<DWA. =A..
i=1 i=1 i=1
2) Let Supp(A,Aj) =k for each i= j is satisfied. Then based on the Def. 4.1, we have
T(A)=(n-1k and

o 2Ar(-DOA - Ya+(-DA YA
PAIT2FN(A, A,,..., A) =12 = = &=L
Z(1+(n_1)k) n(1+(n-21)k) n
i=1
3) Suppose A = Aji=1,2,---,n(n>3) to be n IT2FNs which are the same. Then for all i
and j we have Supp(A, A) =k Finally, as in part (2)
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SR YA
PAIT2FN(A,A,,..., A :‘ZlT:%:A

4) Based on Def. 5.1, it is obvious.

If the numbers have different importance, PA is extended to weighted PA which can be
defined as follows:

Definition 5.2 Consider IT2FNs A,i:1,2,---,n(n23) with importance vector

W = (W, W,,---,W,) such that Zn:vvi =1, then
Yl wT(A)wA]
PAIT2FN, (A, A,,...,A) = =L —,
D (L wT (A)w

where, T(A)=>Supp(A, A)).

=1

J#i
Also, power order weighted average operator of IT2FNs based on the OWA operator [28] is
defined as:

Definition 5.3 Consider A,i =1,2,---,n(n>3) with a permutation A,,i=1,2,---,n such that
A, <A, <---<A, be IT2FNs, then

POWAIT2FN(A, A,,...,A) = Zn:a)kAk*,
where -
9= QRATV)=Q(R1/TV), R = 2V (A.),TV = 3 V(A.).V(A.) =14T(AL),

Q:[0,1] —[0,1] is a basic unit interval monotonic (BUM) function with following properties:
Q(0)=0,Q(1) =1 and for each x>y then Q(x) > Q(y). The Support of jth largest IT2FN

by all the other ones denoted by T(/:\j*) ie., T(AJ_,,) = ZSupp(Al*, Aj*) , and the support of
1=1

1]

I th largest value for j th largest value indicated by Supp(A., AJ_*).

Note: In the above definition:

1) If Q(x) = x then @ =V(Ak*)/TV =[1+T(Ak*)]/i[1+T(Aj*)] and thus

POWAIT2FN(A,A,,...,A) = PAIT2FN(A,A,,..., A ).
2) If Q(x) =x and Supp(,&l*,Ar) =c,(ce[0,1],1 = j), then
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o, =V(A.)ITV =[1+T(Ak*)]/i[1+T(Aj*)] = %

and then POWAIT2FN operator reduces to arithmetic average operator of IT2FNs i.e.
POWAIT2FN(A, A,,...,A)=>Alm.
i=1

3) For Q(x)=1 and Q(x)=0 the POWAIT2FN operator reduces to max and min

operators, respectively. Also, it is easy to see that POWAIT2FN operator has properties such
as boundary, commutatively and idempotency.

It is possible that the given arguments have different importance, and then, the POWAIT2FN
operator is extended with a hybrid operator called the power hybrid average operator of
IT2FNs and defined as follows:

Definition 5.4 The power hybrid average operator of IT2FNs (PHAIT2FN)
A,i=1,2,---,n(n>3) is defined as

PHAIT2FN, (A A,,...,A) = kzn“ka'k* ,
=1
where, W= (W,W,,---,w.) is the weight vector of A(i=1,2,---,n), with 0<w, <1 and
iwi =1, o= (@,,, o) with 0<® <1 and Zn:a)i =1 is associated vector and obtain as
i=1 i=1
in Def. 4.3, m in A =mwA(i=1,2,---,n) called balancing coefficient and A’k,, is the kth

largest of the weighted IT2FN R(i =1,2,---,n).
The support of ,&1 by all other IT2FNs is computed by T(A) as follows:

An algorithm for obtaining T(A)

Suppose A,i=1,2,---,n(n>3) be INT2FNs with a weight vector W = (W, W,,---,w,) then
Step one: For each pair of A and Aj,(i # j), compute the Hamming (Euclidean) distance
between them as in Def. 3.1 which, are denoted by d; =d, (A, A)) (d; =d,(A,A)).

d.
Step two: Compute relative distance rd; = ——.
24
=1
j#i

Step three: Support for A from Aj is denoted by S; and obtain as
Sy = Supp(A,A) =1-rd;.
Step four: Calculate AS,, called the average support of ,&1 by all the other IT2FNs, where
1 n
—n_lzszij.

=1
J#i

AS, =
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Step five: Normalize the average support as follows:
- AS
T(A)=—"—.

2AS,
j=L

5.2 Comparative example

In this example, the proposed method compared with Chen’s method [17, 34], where,
arithmetic averaging or weighted arithmetic averaging methods has been used to obtain a
single value from more than values. It means, a small (large) value can influence and decrees
large (increase small) and toward values.

Let a=((4,5,6,7;1),(4.5,5,6,6.5;,.8)),b = ((1,5,6,9;1), (3,4,5,6;.6)) and
€=((2,4,5,7;1),(3,4,5,6;.7)) be three IT2FNs with weight values w, =0.45,w, =0.25 and
w, =0.3 Based on Chen’s method, we have

= 0.45&(4, 5,6,7;1),(4.5,5,6,6.5;.8)) +0.25((1,5,6,9;1), (3,4,5,6;.6)) + 0.3((2, 4,5, 7;1), (3, 4,5,6;.7)),

and then
% =((2.6,4.7,5.7,7.5;1), (3.2, 4.45,5.45,6.2; 0.6)).

Based on our proposed method

PA(4,b,€) =((2.3,4.7,5.7,7.7;1),(3.5,4.3,5.4,6.2;0.6)).
The obtained values from these two methods are almost equal, but there exist slight
differences due attention to the distance between the input values.

6 A new method obtaining weight vector

Clis used to specify the weight of each DM in group decision-making problems.
Let WC = (wc,, wc,,---,wc,) be the weight vector of criteria which is obtained through the
direct question from the manager. Then, as we know each DM has its own expertise. So, we

asked the manager to evaluate them up to all criteria and arrange these values in a matrix
which is called weight matrix (WM). It means that we have:

Cl C2 Cn
D, wm, wm, wm,
WM =[wm,],,, =D, |wm, wm, wm,,
D wm wm wm

k k1 k2 kn

where, k is the number of contributed DMs, n is the number of criteria and wm; €[0,1]

is the crisp assessment value of ith DM against to j th criterion. Finally, using CI each row of
this matrix is aggregated to a single value that is called the weight of the respected DM i.e.

wd; = (C)Iwmi()d,u = Z[Wm; _Wm;—l]ﬂ{c?' C’jk+11 ’ "'C:}’
=1
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where, wm,=0, {c,c,,---,c.} is the permutation of {c,c,,--,c.} such that

*

wmy, <wny, <---<wmy, 2{C[,C,,+++,C,} is called the measure of criteria c;,c;,;,-,C, and

calculated by A -fuzzy measure, wd, is the weight of ith DM and WD = (wd,,wd,,---,wd,)

is the weight vector of DMs.

On the other hand, each DM has their own skilled opinion corresponding to each criterion
and we have to collect these values. It will be done as follows:
First, we construct an assessment matrix (AM):

D1 Dz Dk

C, am, am, am,,

AM = [amij]nxk =G am,, —am,, am,,
C am am am

n nl n2 nk

where, am; €[0,1] is the importance degree of ith criterion from the viewpoint of jth DM.

Then, similar to afore part, we apply Cl aggregator again to aggregate each row of AM
matrix to a single value as the weight of respective criterion:

k
cd, = (C)Iamiody = Tam; —am; J4C;, ¢y G,
j=1

where, am; <am,<---<am,, cd, is the total weight of ith criterion and

CD=(cd,,cd,,---,cd,) is the weight vector of criteria that applied by DMs in ranking
process of alternatives.

7 Solving an MAGDM problem using PA operator and Choquet integral

By combining PA operator and CI, we will propose a new way for solving an MAGDM
problem in this section.

Let A={A,A,--,A} be n alternatives to be ranked against all attributes/criteria set
C ={c,c,,---,c.} with weight vector WC = (wc,, Wc,,---,Wc,) which, is determined by the
manager.

To do it, the manager invites a group of DMs as D ={D,,D,,---, D, } which, according to
the variety of their scientific expertise and individual differences, have different importance as
weight vector WD = (wd,,wd,,---,wd,). Based on the previous Section, based on the

importance degree of criteria are defined by the manager i.e. WC, we proposed to determine
the importance degree of each DMs (WD), firstly. Next, we apply WD to compute the weight
vector CD. At this time, the alternatives are evaluated up to all criteria by each DMs, i.e.,
there exist k decision matrices D" :[oTijP]nxm, p=1,2,---k, which d} is appraisement of
p th DM from i th alternative against to j th attribute.

In order to rank the alternatives, we proposed to aggregate the decision matrices to a single

matrix using the proposed power average aggregator in this paper, firstly. Then, we apply
Choquet integral on each row of the aggregated decision matrix to compute the score of
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alternatives. Finally, the ranking of alternatives is in accordance with the ranking of their
scores.

The proposed method

This method will be expressed in three steps:
Let the DM’s assessments are assumed to be trapezoidal IT2FNss, i.e.

dijP = (dijPU , di;')L) = <(dijp1u , dijPZU ) di:'asu , di;:}] 1), (diflLidiT;'di%’diill_; h)),
where, he[0,1].
Step one: Construct the aggregated decision matrix through the decision matrices
D" = [cTif]nxm, p=1,2,---,k, and weight vector WD = (wd,, wd,,---,wd, ), using the weighted

PA operator i.e., D =[d,],.,, where d; = PAIT2FN, (d},d?,--,d}).
Step two: Get CD = (cd,,cd,,---,cd ) as entrance vector and compute the joint measure of
each nonempty subset of its element using A -fuzzy concept.

Step three: aggregate all rows of aggregated decision matrix D = [d by Cli.e..

ij]nxm
A = ©)[dods = Y16, 05 1 e, 0Ly, S,

where, d. =((0,0,0,0;1),(0,0,0,0;1)), u({c/,C,,---,C.}) is a joint measure of attribute
{c,c ,,~--,c.} and {c,,c,,---,C.} is permutation of {c,,C,, --,c,} such that

dy<d,<..<d.
Step four: Rank the computed Choquet integral values '&1 and apply it as a ranking order of
alternatives.

8 Numerical example

We’ll apply the proposed method to solve an MAGDM problem.
Example Let {A, A,, A} be the alternatives to be ranked based on the criteria set {c,,c,,C.}.

It will be done by a group of DMs {D,,D,,D,}. Let WC =(0.3,0.6,0.4) be the weight vector

3
of the criteria set obtained by the direct question from the manager. The relation Zwi #1
i=1
implied that the criteria are interactive and we have to use CI in the aggregation process of
each row of weight matrix WM and then the DM’s importance degrees, are denoted by

weighting vector WD = (wd,, wd,,wd,) .

Table 1 Measures of all subset of criteria set C

Fuzzy-measure Quantity Fuzzy-measure Quantity
u(c,,c,}) 0.7912 uc,,c.}) 0.8275
u({c,.c}) 0.8550 u{c..c,.c.}) 1
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Let the DMs are rated from the perspective of each criterion by manager and construct WM
matrix as following:

C C
Dl Cl 2 3
05 0.7 0.2
WM =D,
03 02 0.8

* 109 04 05

Now, we have to compute the weight of each non-empty subset of criteria set. It is done by
A -fuzzy measure with 4 =—-0.6042 and displayed in Table 1. It helps us to aggregate WM ’s
rows using Cl as follows:

wd, = (0.2-0)x1+(0.5-0.2)x0.7912+ (0.7 —0.5)x 0.6 = 0.5574,

wd, =(0.2-0)x1+(0.3-0.2)x0.8257 + (0.8—0.3) x 0.4 = 0.4826,

wd, = (0.4—-0)x1+(0.5-0.4)x0.8275+(0.9-0.5)x0.3=0.5726.

Table 2 Measure of all subset of DMs

Fuzzy-measure Quantity Fuzzy-measure
u({D,,D,}) 0.8146 u({D,D,}) 0.8631
u({D,,D.}) 0gs3  H(ADL D, D:}) 1

Then, we have WD = (0.5574,0.4826,0.5726) as the weights of decision makers and are

used to specify the weights of criteria, from the standpoint of DMs. Let assessment matrix is
completed as follows:

c Dl D2 DS
Y (06 07 04
AM =c,
. 0.9 03 08
* (05 04 08

Then, due to weight vector WD = (0.5574,0.4826,0.5726) each row of AM matrix will

be aggregated to a single value, using Cl with 4 =-0.8319 and according to the given values
in Table 2.
So, we have CD =(0.6202,0.7873,0.6581) as the new weight vector of criteria that, is

used in ranking order of alternatives. Due to the use of these values in integration process, it is
necessary to calculate the weight of their combinations as in Table 3.

cd, = (0.4—0)x1+ (0.6 —0.4)x 0.8146 + (0.7 — 0.6) x 0.5726 = 0.6202,
cd, = (0.3—0)x1+(0.8—0.3)x 0.8631+ (0.9 0.8) x 0.5574 = 0.7873,
cd, = (0.4—0) x1+(0.5—0.4)x0.8631+ (0.8—0.5)x 0.5726 = 0.6581.
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Table 3 Measure of each all of criteria set C

u({cd,,cd,}) 0.9365 u({cd,,cd.}) 0.8846

pedycdy) 090 ({ed, ed, cd;}) !

Each DM evaluates the alternatives against to all criteria and arranged his/her opinions in a
matrix. Thus,

Cl
52 A ((4,5,6,7;1),(4.5,5,6,6.5;.8))
A ((2,4,5,7:1),(3.0,4,5,6.0;.7))
A, ((6,7,8,9:1),(6.5,7,8,8.5;.8))

CZ
((1,5,6,9:1),(3.0,4,5.0,6;.6))
((5,6,7,8:1),(5.5,6,6.5,7;.9))
((2,4,5,7:1),(3.0,4,5.0,6:.7))

C3
((6,7,8,9;1),(6.5,7,8,9;.8))
((1,5,6,9;1),(3.0,4,5,6;.6))
((1,5,6,9;1),(3.0,4,5,6;.6))

Cl
((1,5,6,9;1),(3.0,4,5,6.0;.6))
((2,4,5,7;1),(3.0,4,5,6.0;.7))
((6,7,8,9:1),(6.5,7,8,8.5;.8))

O
1
& F >

C2
((1,5,6,9:1),(3.0,4,5.0,6:.6))
((6,7,8,9:1),(6.5,7,8,8.5;.8))
((3,5,7,9:1),(4,5.5,6.5,8:.9))

C3
((5,6,7,8:1),(5.5,6,6.5,7:.9))
((6,7,8,9:1),(6.5,7,8.0,9;.8))
((5,6,7,8:1),(5.5,6,6.5,7:.9))
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Cl
((2,4,5,7;1),(3.0,4,5,6.0;.7))
((1,5,6,9;1),(3.0,4,5,6.0;.6))
((6,7,8,9:1),(6.5,7,8,8.5;.8))

PV

C2
((3,5,7,9;1),(4,5.5,6.5,8;.9))
((5,6,7,8;1),(5.5,6,6.5,7;.9))
((6,7,8,9;1),(6.5,7,8.0,9;.8))
C3
((6,7,8,9;1),(6.5,7,8.0,9;.8))
{(1,5,6,9;1),(3.0,4,5.0,6;.6))
((3,5,7,9;1),(4,5.5,6.5,8;.9))
To solve this problem, D',D? and D® as decision matrices, using PA operator, will be
aggregated to a single decision matrix D, firstly. Then we have:

((2.3,4.7,5.7,7.7:1),(3.5,4.3,5.4,6.2;0.6))
1D =|((1.7,4.3,5.3,7.6:1),(3.0,4.0,5.0,6.0;0.7))
((6.0,7.0,8.0,9.0;1), (6.5,7.0,8.0,8.5;0.8))

((1.6,5.0,6.3,9.0:1), (3.3,4.5,5.5,6.6;0.6))
((4.0,4.8,5.6,6.3;1), (4.4,4.8,5.3,5.7;0.8))
((2.2,3.6,4.7,6.1:1),(3.0,4.0,4.6,5.5:0.7))

((5.7,6.7,7.7,8.7:1),(6.2,6.7,7.5,8.4:0.8)))
((1.6,5.3,6.3,9.0;1), (3.4,4.4,5.4,6.4;0.6)) |.
((4.7,6.0,7.3,8.6;1),(5.3,6.1,7.0,8.0;0.8))

Now, we aggregate each row of decision matrix D to a single value, using Choquet integral
and values given in Table 3:

(C) j D'd 1 = ((4.4,6.0,7.0,8.5;1),(5.3,5.9,6.8,7.7;0.6)),
(C)[D’dy =((3.2,4.9,5.8,7.1,1),(4.0,4.6,5.3,5.9;0.6)),

(C)[D*du=((5.2,6.3,7.4,851),(5.8,6.4,7.3,8,0.7)).

Finally, these values which, interpreted as the scores of alternatives, are ranked to obtain the
ranking order of alternatives:

A<A<A
If we solved it using Cl aggregator, we would obtain A <A, <A,. In [40] which, CI is
combined with TOPSIS method a similar ranking order as A, <A <A, is obtained. It is
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shown that our proposed method extracts more information from uncertain situations and then
we are closer to the optimal decision. It is necessary to note that this method doesn’t have the
complexity of the previous method ([40]).

9 Conclusion

Undoubtedly, dealing with uncertain information is increasingly growing. IT2FNs can help us
to have a more logical use of such data. In this paper, we proposed a new ranking method for
IT2FNs, and aggregate them using ClI of IT2FNs, and PA of IT2FNs, separately. Also, we
offered a new weighting method based on CI. The proposed methods are used to solve an
FMAGDM problem.
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