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Abstract In this paper, new concepts of a-feasibility and a-efficiency of solutions for fuzzy
mathematical programming problems are used, where @ is a vector of distinct satisfaction degrees.
Recently, a special kind of fuzzy mathematical programming entitled Fuzzy Flexible Linear
programming (FFLP) is attracted much interest. Using the mentioned concepts, we propose a two-
phase approach to solve FFLP. In the first phase, the original FFLP problem converts to a Multi-
Obijective Linear Programming (MOLP) problem, and then in phase Il a weighting technique for the
reduced program is introduced. We saw that it was observed that using this concept as a generalization
of the parametric approach in linear programming provides a more appropriate tool for modeling real
problems and improving the solving process. Thus, by using this two-phase approach, we achieve
better utilization of available resources. Further, the solution resulting from these two approaches is
always an a-efficient solution. Finally, an example in the real world is described to express this
approach.

Keyword: Fuzzy Linear Programming, Triangular Fuzzy Numbers, Multi-Objective Linear
Programming, Feasibility and Efficiency.

1 Introduction

As an important part of mathematical programming, the linear programming is one of the
most frequently applied operation research techniques. In the real-world situations, the
decision marker might not really want to actually maximize or minimize the objective
function. Rather, he or she might want to reach some aspiration levels that might not even be
definable crispy. Thus, he or she might want to improve the present cost situation
considerably and so on. Also, the role of the constraints can be different from that in the
classical one, where the violation of any single constraint by any amount renders the solution
infeasible [7]. The decision maker might accept small violations of constraints, but might also
attach different (crisp or fuzzy) degrees of importance to violations of different constraints.
Fuzzy mathematical programming offers a number of ways to allow for these types of
imprecisions. It is necessary to distinguish between flexibility in the constraints and goals and
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uncertainty of the data. Flexibility is modeled by fuzzy sets and may reflect the fact that
constraints or goals are linguistically formulated. Their satisfaction is a matter of tolerance
and degrees or fuzziness [2]. Ramik and Rimanek [6] also dealt with and LP problem with
fuzzy parameters in the constraints. Later, also Verdegay [8] and Chanas [3] have shown an
application of parametric programming techniques in the fuzzy LP. In [8], Verdegay proposed
a parametric linear programming model with single parameter using « —cuts to achieve an
equivalent model for the fuzzy linear programming with flexible constraints. Werner’s in [2]
introduced an interactive multiple objective programming model subject to its constraint is
flexible and proposed a special approach for solving multiple objective programming model
based on fuzzy set theory. In the mentioned work, the classical model is extended by
integration flexible constraints. After that, Delgado and et al. in [4] proposed a general model
for fuzzy linear programming problem. In particular, they suggested a resolution method for
the mentioned problem. Recently, Attari and Nasseri in [1] introduced a concept of feasibility
and efficiency of the solution for the fuzzy mathematical programming problems. The
suggested algorithm needs to solve two classical associated linear programing problems to
achieve an optimal flexible solution. Now, we are going to improve their method and propose
a new approach, which is more flexible in order to overcome the mentioned shortage. The
new approach can determine the optimal solution by solving an associated auxiliary problem
in just one phase. And hence, our method can obtain the flexible optimal solution with the
higher satisfaction degree in comparison with the earlier approach, which was introduced by
Attari and Nasseri in [1]. Recently, Ramzannia and Nasseri in [7] Solving Flexible Fuzzy
Multi Objective Linear programming problems. The rest of the paper is organized as follows.
In Section 2, we demonstrate some preliminaries of fuzzy set theory. We introduce the
concepts of a-feasible and a-efficient solutions which contain triangular fuzzy numbers in the
coefficients objective function in Section 3. An example in the real world of the methods is
described in fuzzy linear programming problems in Section 4. We will allocate Section 5 to
conclusions.

2 Preliminaries and fundamental definitions

In this section, some basic concepts of fuzzy set theory and concept of feasible solution to the
fuzzy programming problem is given. Furthermore, consider a decision maker faced with a
linear programming problem in which s/he can endure violation in completing the constraints,
that is, s/he allows the constraints to be held as well as possible. For each constraint in the

constraints set this assumption can be denoted by a, x 5b~i , i =1,...,mand for every, modeled
by the use of a membership function
1 a, X <b,
w(x)=4f (ax), b, <ax <b, +p;
0, a;x =b; +p;
P (1)
max Z = CX
(2) st Ax<b
x>0

where f, (0) is strictly decreasing and continuous fora;x , f, (b, )=1 andf, (b; + p; )=0.This
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membership function expresses that the decision maker tolerates violation in the
accomplishment of the constraints i up the valueb;, +d;. The function s (x) gives the

degree of satisfaction of thei - th constrains forx € R", but this value is obtained by means of
the function f. which is defined over R . Based on the above assumption the associated FFLP
Problem can be presented as:

max Z = CX

st. ax<b+p (1-&) ©)

x>0,0, >, 0< ¢ <1, i=1..,m,
We name the above problem as Multi-Parametric Linear Programming (MPLP) problem
[1,3,10]. Now, we are going to give the fundamental concept of feasible solution to the fuzzy
linear programming problem, which is defined in (3).
Definition 2.2 The a-cut or a-level set of a fuzzy setd is a crisp set defined by A, =

{xeR | pg(x) > 0}.

Definition 2.3 Let @ = (a;, - ,a,)e(0.1]™ be a vector, and xz = {(xeR" |x >
0, u{gi(X) <0} =a; i=1,-,m. A vector xeXs is called the @-feasible solution to
problem.

Definition 2.4 Let < be a fuzzy extension of binary relation< and let
x=(xq, ,xn)TeRn be an a-feasible solution to (3 ), where @ = (a4, , @) € (0.1)™
and let Z (¢,x ) be a fuzzy objective. The vector x eR" is an & —efficient solution to (3)

with the maximization of the objective function, if there is no any x'eX_ such that.

Similarly, an « —efficient solution with minimization of the objective function can be
defined. Pay attention that any « — efficient solution to the FFLP problem is an « —feasible
solution to the FFLP problem with some extra properties. In the following theorem, we
represent the necessary and sufficient condition for an & — efficient solution to (3).

Theorem 2.1 Let & =(a,...,a, )<(0,1]"and x*=(xf,...,x;)T, x; 20, j=1..,n be an

& — feasible solution to (3). Then a vector x~ eR" is an & —efficient solution to Problem (3)

with the maximization of the objective function, if and only if x” is an optimal to the
following problem:

max Z(x)=z(C x)
st.  ax<b+p(l-¢), i=1..m, (4)
X 20, ¢ ZaiD,OSai <1 j=1..,n,
where p, is the predefined maximum tolerance.

Proof Let @=(e,...,a,)<[0,1] and x*:(x* X*)T,X;ZO,jzl,...,n be an @—

L X,
efficient solution to Problem (7) with the maximization of the objective function. By
Definition 2.3 and equation (1), we haveax <b, +p, (1—04),04i >a” fori=1,..m.

Therefore, x is a feasible solution to (4). Also by Definition 2.3, there is no any x'e X,
such thatZ (¢,x ") < Z (€,x"), it means that x " is an optimal solution to (4), and in this case

x " is obviously an & —feasible solution to Problem (3). Thus, by Definition 2.4, the
optimality of x ~ implies the & —efficiency of x . m
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Proposition 2.1 Leta =(a, ..., &, ) €(0,1]", then X , = ﬁx .. » where
i=1

X, :{x eR"\x >0,¢; 2 ,a,x <b, +p, (1—ai)} (5)
For i =1,...,m (namely, X! isthe o -cut of the i - th fuzzy constraint).

Proof Foranya =(a,...a,)e(01]", letx e X, thereforea, > a®, ax <b, +p, (1-e; ).

Now and from (5) we have x X ,i =1,..,m, and therefore x e(]X, . On the other hand,
i=1

if x e[ )X, , we have x eX | ,for alli =1,..,m. Thereforec; >”, ax <b; +p, (1-c;)
i=1

and hence x € X _. This completes the proof. m
Proposition 2.2 Let &' =(o,...,a;, )anda@” =(o,...,ay, ), Where o <o forall i,then &"—

feasibility of x implies the &' —feasibility of it.
Proof The proof is straightforward. m
For a givena €(0,1], let x eR" be a usual «—feasible solution to (3) (a solution with the

same degrees of satisfaction in all constraints). It has the meaning ofa,x <b; +p; (1-¢, ),
o, >aP orequivalentlyx e X !, forall i =1,...,m.
If a=(a,...a)e(01" , then x € X  which implies that the o —feasibility of (3) can be

understood as a special case of the & — feasibility. Thus, the following result can be obtained.
Remark 2.1 If the problem (3) is not infeasible, then X _is not empty.

Proof The proof is straightforward. m

3 Flexible Fuzzy Linear Programming

Let us consider the following fuzzy mathematical programming problem,

maxf(x, E)
s.t. g (x)=<0, i=1,-,m (6)
x =0,

where x = (x;, ==, x,,)" is an n-dimensional real decision vector ¢ =(¢,,¢,,...,C, )is an n-

dimensional fuzzy vector of fuzzy parameters involved in the objective function f.
where f(x,¢) ~ éx, g; () <0 = q,Tx < b;.

Unfortunately, the model (6) is not well-defined because:

i. We cannot maximize the fuzzy quantity f(x, €)

ii. the constraints g; (x)<0, i =1, -+ ,m, do not produce a crisp feasible set.

Therefore, in order to obviate those mentioned restrictions, we introduce the following
problem,
max (€, xp) = X1 G x;

st wlgi)=0f 2z a, ™
x>0,
0<ag; <1, i=1,--,m,
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To motivate for a meaningful choice of membership function for each fuzzy constraints, it
is argued that if g;(x) <0, then the i-th constraint is absolutely satisfied, whereas if
gi(x)>p;, where p; the predefined maximum tolerance from zero, as determined by the
decision marker, then thei-th constraint is absolutely violated. for g;(x) e (0,p;), the
membership function is monotonically decreasing. If this decrease is along a linear function,
then it makes sense to choose the membership function of the i-th constraint (i =
1,2, ,m)as

1, gi(x) <0,
nifgi(x) < 0} = 1_%?’ 0<g:x) <p;,
0, gi(x) = p;,

Also, in the objective function ¢; is fuzzy number. Here for the rest of the paper, we assume
the fuzzy number is triangular. Any triangular fuzzy number ¢, can be represented by three
real numbers c;,c;" and ¢ . Using this representation, we write ¢ = <c0L .l > Problem
(7) can then be rewritten as
max (C.xp) = Xj-q <COL o ,c§> Xj
5.t u{gi() =0} = «a. (8
x =0,
0<a;<1,i=1,-,m
where ¢; = <COL ,C' c§> is the triangular fuzzy number. Now, we consider the following
MOLP problem which is associated to the original fuzzy LP:

max ({cot, %), (c;™, x)coR JC))T

s.t. ,ui{gl-(x)jO} > a )
x=0,
0<g;<1,i=1,-,m
where ¢yt =
T
(C01L’CozL’ ’COnL) LR =
T T n
(C01R’C02R, ’COnR) , 6= (C11maC12m, ’Clnm) eR .

Also, from Theorem 4.3 in [5] we consider the following weighting LP problem defined by:
max (w. ¢ x) = wol{col, x) + wy™(c;™, x) + woR{c,R | x)

s.t. ,ui{gi(x)jO} >a, x=0,i=1,:--,m, (10)
Where CiL = (COlL y COZL, ,COnL)T y Cim = (Cllm y Clzm, . Clnm)T, CiR =
(cor® . Co2™, -+ ,COnR)Te R"and w = (wok,w;™, woR) = 0. Also, using Theorem 2.1, we

have the following problem:
max (w, Ty x) = wok(col , x) + wy™(c,™, x) + woR{coR , x)
s-t. 9i(x) < (1 —a)p; i=1,-,m (11)
=20, j=1,-,n.
In order to find a maximum efficient solution, i.e., an & -efficient solution with a@ >
a,i = 1.---.m, we perform the following two-phase approach. In the two-phase approach, Eq
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(11) is solved in phase 1, while in phase 2, a solution is obtained which has higher satisfaction
degrees than the previous solution. Thus, by using this two-phase approach, we achieve a
better utilization of available resources. Further the solution resulting by these two approaches
is always an a-efficient solution. Let us call the problem (11) as the phase 1 problem.

Let @® = (a;°, - ,a,,°), and (x*,fw (x*,c)) be the optimal solution of phase 1 with &@°

degree of efficiency. Set a;* = pi{g;(x*)<0} = a,°, i =1, -+, m. in the phase 2, we solve
the following problem,
max Yl a;
st. f, (x,c)=f, (x".c) (12)
gi(x) < (1 —ap:.
a*<a; <1, i=1,-,m
x = 0.
In the below, we give an illustrative example.

4 An example in the real world

The factory produces three types of oils with three different combinations. The ratios of this
composition, together with the total raw material available and the income derived from each
kilo of oil, are shown in Table 1. The goal of the factory is to know how much each oil should
be produced to maximize the revenue generated by its sale.

Table 1 Data
Raw materials of Raw materials of Raw materials of | Revenue per kg of
the first type the second type the third type oil (toman)
First type oil 25 50 25 350
SeconqI type 40 30 30 300
oi
Third type oil 40 40 20 320
Total raw 1600 2200 1300
material in kg
of any type

In addition, the available materials from the raw materials required by this plant,
according to the expert's opinion, will be added to the following amounts (amount of

tolerance):
Table 2 Materials

Raw materials
of the first type

Raw materials of the
second type

Raw materials of the
third type

300

500

170

Amount of tolerance of
Total raw material in kg
of any type
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Given the assumptions of the problem, the coefficients of the objective function (revenues)
are the following triangular fuzzy numbers: c, =(330,350,380), c, =(290,300,320)and

¢, = (305,320,325)

Solving: We first model the problem.
X, : the amount of kilogram produced from the first type oil

X, : the amount of kilogram produced from the second type oil
X 5 the amount of kilogram produced from the third type oil

max z = 350x, +300x, + 320X,
st. 25x, +40x, +40x, <1600,

50x, +30x, +40x, < 2200, (13)
25x%, +30x, +20x, <1300,
X, X5, X5 = 0.
We consider the following membership function:
1, Ax<b
1 (AX.b)=41-(Ax=b)/p, b <Ax<b+p, =123
0, Ax>Db +p

Where p, =300, p, =500and p, =170 are predefined maximum tolerance from b;,

i =1.23.
Now, by considering the weights as w; = 1/4.w,=1/2 and w; = 1/4 for the objective
function. we can rewrite (13) as follows:
First stage problem:
maxz =352.5x, +302.5x , +317.5x,

st. 25x,+40x,+40x, <1600+300(1-«,),
50x, +30X , + 40X, < 2200+500(1—a, ),
25, +30X , + 20X ; <1300+170(1- @, ),
O<e; <11 =1,...,m,
X;20,j=123.

(14)

Some a-efficient solution with satisfaction degrees, which decision maker’s desire can be
found in the following table (3):

Table 3 Some typical & -feasibility solution

a b c d e f

a (05.0505) (05,05,0.3) (0.7,0.50.5) (0.5,0.7,0.5) (0.5,0.5,0.7)
cTx 18701.8 18807.4 18595.2 18240.9 18135.2
X1 32.27 33.17 34.67 29.60 28.69
X2 10.67 12.93 10.67 14.00 11.73


http://dx.doi.org/10.71885/ijorlu-2023-1-610
https://ijaor.com/article-1-610-en.html

[ Downloaded from ijaor.com on 2025-10-23 ]

[ DOI: 10.71885/ijorlu-2023-1-610 ]

18 S.H. Nasseri and S. Mansouri/ IJAOR Vol. 11, No. 1, 11-19, Winter 2023 (Serial #36)

X3 1292  10.08 9.92 11.25 14.08
a; 05 0.5 0.7 0.5 05
a, 05 0.5 05 0.7 0.7
a; 05 0.3 05 0.5 0.7

If all of the satisfaction degrees are equal, then the a@-feasibility and a-efficiency reduce to
classic a- feasibility and a-optimality (see table 3, column b). Let x*be (0.7,0.5,0.5) -

efficient solution with ¢"x* =18595.2 an optimal objective value (see table3, column d). In

Phase 11, we need to solve the following linear programming,

Second stage problem:
max o, +a,+a,

st. 352.5x,+302.5x, +317.5x ; >18595.2,
25X, +40x , +40x , <1600+ 300(1- ¢, ),
50X, +30X,, + 40X, < 2200+500(1—a,),
25, +30X , + 20X ; <1300+170(1—az,),
0.7<,<1,05<¢,<1,05<, <],
X,;20,j =123

Table 4 Comparison of the solutions of the first and second stage problems

Optimal solution Phase I of | Optimal solution phase
column d 11

a (0.7,.05,.05) (0.7,.0.5,.0.5)
c'x 18595.2 18595.2

X, 34.67 34.66

X, 10.67 10.66

X, 9.92 9.91

a, 0.7 0.7

a, 0.5 1

a, 0.5 1

(15)

An optimal solution to the above problem is x™ =(34.66,10.66,9.91). Also
We  have 4 (AX™,b,) =1, 11, (AX " ,b,) = 11, (AX b, ) =05.

Thus, using the two-phase approach, we can get an optimal solution x**which not only
achieves the optimal objective value, but also gives a higher membership value in y;.

c'x™ =c"x"=18595.2.
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5. Conclusion

In this study, a two- phase approach for solving fuzzy flexible linear programming as one of
the comfortable models which is formulated in some real situations proposed. The method
based on extending « —feasibility solution to « —efficiency solution is established. In the
illustrative example, we saw that the defined method in Phase Il suitably can improve the
satisfaction degree of the solution based on the new proposed concept. In particular, unlike of
the existing approach, the proposed method without using any ranking function. Hence, we
saw that in the solving process it is necessary to apply a kind of multi-objective programming
techniques. Here, we used the weighted method for this aim.

We saw that it was observed that using this concept as a generalization of the parametric
approach in linear programming provides a more appropriate tool for modeling real problems
and improving the solving process. This approach will be useful in obtaining flexible
responses with a degree of satisfaction determined by the decision maker for fuzzy
mathematical programming. We emphasize that this approach can be extended for the other
generalized form of fuzzy flexible linear programming models.
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