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Abstract Data Envelopment Analysis (DEA) is non-parametric mathematical programming for measuring 

the performance of a set of homogeneous decision-making units (DMUs). Standard DEA models usually 

result in several efficient units, so, picking the best unit among efficient units has been one of the most 

challenging subjects in DEA literature. With reference to various researchers, the common set of weights 

(CSW) approach has been intriguing among them. This paper discusses a mechanism for detecting a 

common set of weights which is managed to be always positive and prevents weights dissimilarity. 

Employing this common set of weights can determine the efficiency score of each unit and finally rank 

them based on their obtained efficiency score. Equally, the proposed model not only provides the closest 

targets, but also minimizes the deviations of actual DMUs and extreme efficient units. In order to verify 

the proposed approach an empirical example of Iranian electricity distribution companies is explained. 

 

Keywords: Data Envelopment Analysis (DEA), Common Set of Weight (CSW), Efficiency Score, 

Deviation and Weight dissimilarity.  

 

 

1  Introduction 

 

Data envelopment analysis (DEA) is concerned with a comparative assessment for evaluating the 

efficiency of decision-making units (DMU). One of the most challenging issues in DEA literature 

is the concept of input /output weights. Standard DEA models produce more than one efficient 

unit and determine the weights of inputs and outputs separately for each DMU. So, the flexibility 

in choosing weights has been questioned. From the practical point of view, picking one or more 

efficient units looks imprecise and impossible. Consequently, the different sets of weights can 

lead to different efficiency measures for DMUs. So, the flexibility in selecting input/output 

weight applying different sets of weights can be argued. This means that employing a common 

set of weights can reduce flexibility. To overcome a common set of weights (CSW) problem, 

many researchers have been established and extended in DEA literature. For instance, Ganley, 
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and Cubbin [1] determined the common set of weights by maximizing the summation of unit 

performance. Roll, Cook, and Golany [2] and Roll and Golany [3] proposed several 

approximations for common weights production. The authors implemented unbounded DEA 

models for generating various sets of weights. By taking a weighted average on efficiency scores 

as the weights, the proposed models maximize the average efficiency of units and the number of 

efficient DMUs. Although, according to order of importance, various factors can be ranked by 

their model.  As the last step, low weights can be assigned to less important factors and a 

maximal feasible weight goes to important ones. Sinuany- Stern et al. [4] suggested a two stage 

linear discriminate analysis approach to produce the common weights. Sinuany-Stern, and 

Friedman [5] argued a nonlinear discriminate analysis to provide the common weights. Kao and 

Hung [6] presented the comparison solution approach to generate a common set of weights under 

the DEA framework.  The idea behind the model is searching for common set of weights 

achieving the shortest distance between the efficiency score calculated from the corresponding 

weights and the targets. This target is the efficiency score calculated from the standard DEA 

model.  Liu and Peng [7] just focused on efficient DMUs and proposed an approach to identify a 

common set of weights for the performance indices. Wang et al. [8] introduced a methodology by 

imposing an appropriate minimum weight restriction on all inputs and outputs that rank all 

DMUs. In another attempt, Wang et al [9] proposed an alternative method based on regression 

analysis to search a common set of weights for fully ranking DMUs. Sun et al. [10] suggested 

two different models with reference to ideal and anti- ideal DMUs to conduct common weight for 

efficiency scores then ranking units. Surveying these researches, this paper proposes a model for 

determining a common set of weights which evaluates the absolute efficiency of each unit. The 

contribution of the paper is three folded. First, the proposed method provides the closest targets 

on the efficient frontier for each input and output. Especially, the targets on the efficient frontier 

satisfy the update characteristics and composed of extreme efficient units at the same time.  

Second, the proposed model allows minimizing the deviations of actual inputs and outputs with 

the determined target. Third, the model generates positive input/output weights and prevents 

weights’ dissimilarity simultaneously. As a non- parametric technique, the proposed model does 

not require the initial information on input /output‘s weights.  Top of all, in efficiency evaluation 

and production estimate, the results of the proposed model is more trust able.   

The structure of this paper unfolds as follows. The following section is briefly speaking about 

traditional DEA models and discusses some necessary properties. Section 3 extends our proposed 

methodology for determining a common set of weights. In Section 4, a real -world example of 

electricity distribution companies in Iran is analyzed to illustrate the applicability of the proposed 

approach. The Conclusion will end the paper. 

 

 

2 Preliminaries 

 

Consider that there are n  production units ( DMU ) that can be evaluated in terms of m  inputs 

and s  outputs. Let ( 1,..., )ijx i m and rjy ( 1,..., )r s  be the input and output vectors of jDMU  

( 1,..., )j n . Also, imagine
ru ( 1,..., )r s ) is the weight vector given to r -th output and 

iv

( 1,..., )i m plays the role of the weight vector given to i -th input. According to Charnes et.al 
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[11], the best relative efficiency of each unit can be measured by following CCR
*
 model that was 

named by the acronym of the three authors: 
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In the above model, ( 1,..., )oDMU o n  refers to the DMU  under evaluation. If the optimal 

value of the objective function for
oDMU  equals to unity, then the under evaluated unit is 

efficient. Otherwise, it is called as inefficient. For more description, consider the dual format of 

Model (1). The dual formulation of Model (1) can be stated as follows. 
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In the model above, 
o  indicates the efficiency score of the under evaluated unit. Also, 

( 1,..., )j j n  shows the intensity variable of each unit. The standard CCR model, model (1), 

applies the unit invariant property. This property has been structured by Lovell and Pastor [12] 

which employs to normalize the weights. Since the main interest of our study is to prevent weight 

dispersion; this valuable property can be implemented on model (1) as constraints (3-2) and (3-3) 

admits. In other words, there is a scale of data leading to the equivalent form of model (1) as 

follows: 

1
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* Charnes, Cooper and Rhodes (CCR) 
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Suppose that *

ru ( 1,..., )r s and *

iv ( 1,..., )i m are optimal solutions of model (1) and φ 

defined as the maximum of optimal weight values of *

ru ( 1,..., )r s and *

iv ( 1,..., )i m . If the 

weights of input and output of the model (1) are divided to φ, an answer for model (3) is assessed.   

So, models (1) and (3) are equivalent. As it can be seen the objective function and first constraint 

of models (1) and (3) are similar. But nonnegative variables in the model (1) have been replaced 

with the bounded variables in the model (3). The bounded variables in the model (3) can prevent 

dissimilar weights. This property is the advantage of the model (3) in contrast to the model (1). In 

the following section, a developed model is proposed which can support the generation of 

nonnegative weights. Model (3) has been taken from the article by Pourhabib et al [13]. 

 

 

3 The Proposed Approach 

  

Once we obtain the optimal solution of model (1), each unit selects its best weights to maximize 

the efficiency score.  However, some questions are raised. First, different sets of weights may 

result in different efficiency scores. Hence, comparing the scores and ranking the units is 

disputable.  Secondly, the standard DEA models always generate more than one efficient unit 

which leads to a lack of discrimination among units. In order to tackle with these shortcomings, a 

common set of weight (CSW) approach has been proposed to reduce the flexibility in weight 

selection. Based on the idea behind the model (3), an alternative CSW mechanism is developed in 

this section. Again suppose that there are n  production units ( 1,..., )jDMU j n that consume 

varying amount of m  inputs ( 1,..., )ijx i m to produce s  outputs rjy ( 1,..., )r s . The production 

possibility set (PPS) T can be described as:   

1 1

( , ), , , 0
n n

j j j j j

j j

T x y x x y y  
 

   
 
 
 

  . 

This set has set up on the constant return to scale (CRS) assumption for the production 

technology and employs to evaluate the efficiency of all DMUs .  As a matter of fact, each unit 
should catch its target on the efficient frontier which formed by some extreme efficient
DMUs . However, the aim is to set the closest targets which can be achieved, especially for 
inefficient DMUs .  In doing so, the proposed model employs a mechanism that can provide 
the closest target after the linear combinations of extreme units are allowed. So, the 
proposed model seeks to minimize the deviations of actual inputs and outputs from the given 

targets.  Model (4) is then formulated as follows: 
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Clearly, Model (4) is a nonlinear program and focuses on two main features. According to 

constraints (4-5) and (4-6) the model prevents weight dissimilarity. These constraints screw all 

weights to settle between two bounds: the common lower bound φ and the upper bound of unity. 

In this way, it prevents the dispersion of input and output weights. The second feature of the 

model (4) is determining positive common set of weights. The model (4) assumes that all 

observation belong to the production frontier as indicated by the constraint

1 1

0   ,   1, ,
s m

r rj i ij

r i

u y v x j n
 

     . Also, this constraint can define all hyper planes of the efficient frontier. 

The first two constraints (4-1) and (4-2) represent the linear combinations of extremely efficient 

units. In fact, the presence of constraint (4-4) attempts to catch such a set of weights conducted by 

extreme efficient units.  This model attempts to pick up a set of weights conducted by extremely 

efficient units. This strength of the model leads to set positive and dissimilar weights. In addition, 

guarantees that we can select a common set of weights among the multipliers of supporting hyper 

planes. The objective function of the model (4) can support the idea of minimum deviation. 

Looking closely, deviation of each unit and the virtual one is minimized. As model (4) admits, the 

virtual unit is composed of linear combination of extreme efficient units. Note that, setting this 

minimum deviation in the objective function, the lower bound , can be increased.  What’s more, 

by proper choice for   , among all feasible multipliers, our proposed model can effectively avoid 

weight dissimilarity  and generates positive common weight and at the same time. Notably, this 

process in common set of weight choice does not require additional information about the unit 

under evaluation. The initial information about inputs and outputs is sufficient.  Likewise, this 

process has an influence on optimal solutions. That is to say: the common set of weights can be 
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selected by jointly restricting the input and output weights with a single bound. However, this 

common lower bound of input/output weights, , may not be sufficient to achieve optimal  

weights. Hence, this model can be extended to a general model that can restrict input and output 

weights separately.  To address this issue, the following linear fractional programming problem is 

proposed. 
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The idea behind the model (5) is as same as that one in the model (4). But there exists a great 

divide between model (4) and model (5).  The constraint (5-5) forces all input multipliers to 

screw between the lower bound
IZ and unity. The constraint (5-6) also makes all output 

multipliers lie down between the lower bound  and the upper bound 1. The constraints (5-7) and 

(5-8) restrict the lower bound of input and output’s weights to the positive variable φ. That is to 

say, input and output weights are restricted separately. The objective function of the model (5) is 

also established to maximize φ while the distance between 
IZ and    with their upper bounds is 

reduced. Thus, the model supplies the weights with the least dissimilarity, which is the main 

interest of the study. The following two theorems emphasize that both proposed models are 

always feasible. Besides, positive weights can be assessed by implementing these models.  

Theorem 1: The proposed model (4) is feasible and generates positive weights in optimality. 

Proof: Imagine oDMU is evaluated by the CCR model (model (1)). Also, dDMU  plays the 

reference unit of oDMU . Thus, we have 0d

ru  and 0( 1, , , 1, , )d

iv i m r s   . As a result, 
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 
,

, , ,d d d d

r i r i
i r

u v Min u v  is a feasible solution for evaluating 
oDMU by the model (4). Also, note that 

that φ 0. 

Theorem 2: The proposed model (5) is always feasible and in optimality φ 0. 

Proof: the proof is the same as Theorem (1).  

In order to highlight the models’ applicability, two different examples are distinguished.  

 

 

4 Numerical example  

 

To verify the applicability of the proposed models, two various examples are executed. For the 

first try, the proposed model is compared with those proposed by Kao and Hung's [6] models. 

The authors have proposed three models employing different distance functions to generate 

common weights. For more information, refer to Kao and Hung [6]. 

 

Example 1 

 

This example consists of 12 flexible manufacturing systems (FMSs) with two inputs and four 

outputs. These data are derived from Shang and Sueyoshi [14] and are recorded in Table 1. The 

inputs include annual operating and depreciation costs ( 1x ) and the floor space requirements of 

each specific system ( 2x ). Outputs signify the improvement of qualitative benefits ( 1y ), work in 

process ( 2y ), average number of tardy jobs ( 3y ), and average yield ( 4y  ). 

 
Table 1 Data set for 12 flexible manufacturing system (FMSs) 

 

 

 

The proposed model (4) and Kao and Hung [6] models were implemented on this data set. 

Table 2 shows the results. The first three rows of Table 2 demonstrate three different results 

(based on different distance functions) and the last row shows the results of the proposed model 

(4). As Table (2) records the weights for output 3 in Kao and Hung [6] model are always zero, 

whilst the proposed model (4) gives strictly positive weights for all outputs. Note that the results 

of Kao and Hung [6] models are taken from Sun et al [10]. 

FMS 
1x  2x  1y  2y  3y  

4y  

1 17.02 5 42 45.3 14.2 30.1 

2 16.46 4.5 39 40.1 13 29.8 

3 11.76 6 26 39.6 13.8 24.5 

4 10.52 4 22 36 11.3 25 

5 9.50 3.8 21 34.2 12 20.4 

6 4.79 5.4 10 20.1 5 16.5 

7 6.21 6.2 14 26.5 7 19.7 

8 11.12 6 25 35.9 9 24.7 

9 3.67 8 4 17.4 0.1 18.1 

10 8.93 7 16 34.3 6.5 20.6 

11 17.74 7.1 43 45.6 14 31.1 

12 14.85 6.2 27 38.7 13.8 25.4 
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Table 2 Common weights Derived by different models 

 

O4 O3 O2 O1 I2 I1 Model 

0.011944 0 0.004024 0.021330 0.026510 0.076680 P=1 

0.254175 0 0 0.225722 0.386831 0.928986 P=2 

0.238215 0 0.05559 0.150772 0.415631 0.896384 P=∞ 

0.127374 0.060618 0.191191 0.177336 1.00000 0.928542 Proposed model(4) 

 

For detailed analysis, the efficiency scores of different models are depicted in Table 3. The 

second column is calculated by the traditional CCR model (1), the rest three columns present the 

efficiency score of Kao and Hung [6] models. The last column includes the efficiency scores of 

the proposed model (4). 

 
Table 3 The efficiency scores calculated by different models 

 

DMUs CCR P=1 P = 2 P = ∞ 
newEff  

1 1 1 0.9654 0.9111 0.98990 

2 1 0.9788 0.9616 0.9026 0.96880 

3 0.9824 0.9488 0.9132 0.9021 0.95387 

4 1 1 1 1 0.99998 

5 1 1 0.9641 0.9663 1 

6 1 0.9624 0.9866 0.9872 0.81451 

7 1 1 1 1 0.87604 

8 0.9614 0.9614 0.9423 0.9203 0.91813 

9 1 0.7528 0.8462 0.8760 0.55643 

10 0.956 0.8334 0.8041 0.8295 0.81175 

11 0.9831 0.9507 0.9160 0.8591 0.89740 

12 0.8012 0.7943 0.7750 0.7602 0.81340 

Average 0.9734 0.9317 0.9228 0.9095 0.883351 

 

The notification newEff indicates the performance score of the proposed model (4). The 

second column of Table 3 shows the CCR efficiency scores. The traditional CCR model (1) 

evaluates seven out of the twelve units as DEA efficient. This subject leads to a lack of 

discrimination power of the CCR model (1). The rest three columns of Table 3 derive the 

efficiency scores of Kao and Hung [6] models which are based on different distance functions. It 

can be seen, there are four efficient units in P=1and two efficient units in P = 2and P = ∞. As the 

last column of Table 3 presents, the proposed model (4) gives only one efficient unit. Therefore, 

the number of efficient units is reduced from 7 to 1 in the proposed model (4). From the statistical 

point of view, the average efficiency of all mentioned methods is listed in the last row of Table 3. 

The average of efficiencies in the proposed model (4) is 0.8833 while this quantity is recorded as 

0.9734 in the CCR model (1) and 0.9317 in Kao and Hung [6] with p = 1. The other two models 

of Kao and Hung [12] with P = 2 and P = ∞, the average of efficiency scores are depicted as 

0.9228 and 0.9095, respectively. As expected, the results show that the proposed model (4) 

outperforms the existing model.  Notably, the proposed model (4) not only results in strictly 

positive weights compared to other models, but also avoids weight dissimilarity.  Generally, 

model (4) reduces efficiency scores and the number of efficient units.  
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Example 2 

 

In this section, we apply our proposed models to analyze a real example of Iranian electricity 

distribution companies. Since electricity distribution has been pointed out in most of the 

researches, a summary of some studies has been given. Yuzhi and Zhangan [15] have studied the 

input-output efficiency of distribution systems from the more different aspects. Performance 

analysis of 21 Turkish electricity distribution companies was conducted by Celen [16]. Omrani et 

al. [17] employed a mixed methodology of bargaining game, principal component analysis, and 

DEA to evaluate the efficiency of electricity distribution in Iran. The ranking of the electricity 

distribution in Iran was carried out by Tavassoli et al. [18] with a view to strong complementary 

slackness conditions. All of these studies have focused on calculating the efficiency of electricity 

distribution companies. This section struggles to evaluate electricity distribution companies in 

Iran employing the proposed models. In this study, 39 electricity distribution companies in Iran 

with 14 variables including 6 inputs and 8 outputs are selected. Input variables include: 

transformer capacity or maximum amount of power that can be transformed by the transformer 

and denoted as (x1), Number of Transformers in circuits is (x2), Low voltage network or voltage 

levels less than 1 KV (x3), Medium voltage network or voltage levels greater than 1kV and less 

100 kV (x4), Number of employees (x5) and Area (x6). Output variables can be listed as the 

Energy delivery (y1), Energy consumption of other customers or the total amount of energy used 

except industrial and household consumption (y2), Industrial energy consumption (y3), Household 

energy consumption (y4), Number of other customers (y5), number of industrial customers (y6), 

Number of household customers (y7), and Number of Lights of a street lighting (y8). Table 4 

represents the data set for these 39 companies. 

 
Table 4 The data set for 39 electricity distribution companies 

 

Company 

 1x  2x  3x  4x  5x  6x  1y
 2y  3y  4y  5,7y  6y  8y  

Tabriz 1686 5590 5317 2966 572 4770 3816 1066 1154 1300 864 9 189 

Azarbayejansharghi 1731 15422 89871 13737 700 40722 3296 1162 853 867 744 5 298 

Azarbayejangharbi 2330 17345 11443 14485 725 37412 5059 1819 803 1666 1097 5 322 

Ardebil 853 5992 5923 7060 299 17867 1640 555 262 586 477 3 148 

Ostan Esfahan 5069 29865 16827 19131 512 91000 9564 3287 3552 1941 1262 17 446 

Esfahan 2498 9806 7938 5066 295 16104 5409 1833 1425 1810 1030 10 215 

Chaharmahal-o-bakhtiari 971 7554 4555 6296 158 16411 1651 754 257 414 313 2 109 

Markazi 2215 14675 7982 11201 315 29127 4787 1625 1679 917 635 6 173 

Hamedan 2118 15021 7545 9937 369 19493 3521 1667 326 1003 658 5 276 

Lorestan 1797 12605 6968 8866 221 28306 2926 1158 456 917 558 3 149 

Alborz 2659 12643 7211 4836 349 5142 6286 1763 1539 1886 1154 5 203 

Tehran 10756 16602 22299 8469 1742 1011 20512 9482 1753 7811 4255 12 364 

Ostan Tehran 7592 38199 17487 13805 720 13029 12654 3786 3648 3112 1940 26 281 

Ghom 1406 5636 3569 3287 250 11237 3188 1087 711 955 481 5 83 

Mashhad 2596 10707 9016 5440 396 3168 6477 2121 1516 2310 1367 11 258 

Khorasanrazavi 2998 22765 12939 26143 572 103950 7613 4565 796 1552 1115 6 380 

Khorasanjonobi 908 8301 4848 12197 189 151196 1539 763 267 373 327 2 150 

Khorasanshomali 699 5582 4159 5763 196 28166 1205 496 221 389 310 1 103 

Ahvaz 4228 12864 5531 3732 419 11304 8957 1819 988 4338 500 2 132 

Khozestan 7322 34824 11633 17295 507 57945 16195 3515 1869 8066 912 2 255 
Kohkiloyeh-o-

boyerahmad 
1083 6874 3318 4688 174 15563 1583 363 269 558 215 1 63 

Zanjan 1363 8560 5437 7857 232 22164 3099 848 1429 518 390 3 149 
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Ghazvin 1750 10799 4885 6763 236 15637 4412 1516 1835 753 526 4 165 

Semnan 1241 7001 4202 6850 183 97491 2530 985 904 464 335 4 105 

Sistan-o-balochestan 2460 19630 11369 22680 671 187502 5165 1702 147 2473 685 2 193 

Kermanshah 1922 15575 6487 11221 296 24641 3142 1131 298 1072 676 2 151 

Kurdestan 1273 10741 5226 9905 232 28817 2120 847 165 877 561 2 139 

Illam 857 5084 2493 4367 112 20150 1320 488 74 448 193 1 63 

Shiraz 3680 24105 11488 11339 530 20184 5807 2503 816 1629 920 8 202 

Fars 3621 33351 11613 22059 356 103000 6977 3757 471 2105 837 5 361 

Boshehr 2970 13161 5774 7100 227 23168 5486 1230 141 3257 387 2 155 

Shomal-e-kerman 2019 14070 7483 11128 380 91193 4090 2172 500 922 543 3 269 

Jonob-e-kerman 2708 23226 12331 18249 368 95887 5500 2679 224 1780 500 2 162 

Gilan 2890 17006 18528 8648 621 14711 5080 1483 861 2063 1250 5 500 

Mazandaran 3331 25825 14271 10311 624 14732 5941 1576 1111 2210 1163 9 160 

Garb-e-mazandaran 1691 11287 6110 3923 232 9040 2131 706 205 899 499 3 106 

Golestan 2021 14843 6988 7078 348 20381 3258 1020 414 1413 633 3 102 

Hormozgan 3750 21016 8268 13926 447 66539 819 2131 242 4445 585 2 184 

Yazd 1765 13385 7378 9688 349 74650 4491 1231 2092 874 569 9 226 

 

Our proposed model (4) and three different distance function models of Kao and Hung [6] are 

employed on the data set of Table 4. The weights of six inputs and eight outputs are listed in 

Table 5. It is worth to note that, the first three columns in Table 5 (Kao and Hung [6] models) 

present the weights as close as to zero. In contrast, the proposed model (4) gives the weights with 

the least dissimilarity. Also, as the last column of Table 5 draws there is a huge discrepancy 

between the results of the proposed model (4) and zero.  
 
Table 5 Common weights derived by different models 

 

 p = 1 P = 2 P = ∞ 
newEff  

V1 0.00293 0.0063 0.0049 0.204230 

V2 0.0001 0.0001 0.0001 0.469186 

V3 0.0001 0.00041 0.0001 0.415018 

V4 0.0001 0.0001 0.0001 0.239133 

V5 0.00276 0.0047 0.00205 0.001598 

V6 0.0001 0.0001 0.00011 0.420507 

U1 0.0005 0.00034 0.0001 0.604785 

U2 0.0023 0.00474 0.00288 0.831806 

U3 0.0001 0.0001 0.0001 1 

U4 0.0001 0.00296 0.00321 1 

U5 0.0001 0.0001 0.0001 1 

U6 0.0001 0.0001 0.0001 1 

U7 0.0001 0.0001 0.0001 1 

U8 0.0185 0.03473 0.1907 1 

 

To find the optimal solution to Kao and Hung’s [6] Models, weight restrictions 

( 1,..., ), ( 1,.., )r iu r s v i m     can start with small as 0.0001   the initial point.   Turning 

back to Table (5), the input and output weights in the three first models of Kao and Hung [6] 

catches the epsilon value. Hence, the weights ‘value is dependent on the epsilon value. Changing 

the epsilon value can reform the quantity of the weights too. On the other hand, the proposed 

model (4) gives all positive weights and the least dissimilarity. In order to show the advantages of 

our proposed model (4), we compare it with Kao and Hung [6] models and the CCR model (1) 
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based on efficiency scores. Table 6 records the efficiency scores of different methods on the data 

set of Table (4).  

The second column of Table 6 shows the CCR efficiency scores. As it can be seen, CCR 

model (1) shows 23 of the 39 companies as DEA efficient. The rest columns of Table (6) record 

the efficiency scores of Kao and Hung [6] distance functions models. There are one efficient unit 

in P = 1, eight efficient units in P = 2 and three efficient units in P = ∞. The efficiency scores of 

the proposed model (4) are recorded in the last column of Table 6. Interestingly, there is only one 

efficient unit in this approach. As the last row of Table 6 displays, the average of efficiency 

scores in proposed model (4) is the least (0.357989) among the models. The maximum average 

efficiency is recorded as 0.93469 in the CCR model (1). Kao and Hung [6] models with P=1 and 

P = ∞ have drawn the second and third rank with0.69670 and 0.731641. The next row is assigned 

to Kao and Hung [4] models with P=2 with the value of 0. 808232. DMU#12 is the top-ranked 

company in the proposed model (4). Generally, the proposed model (4) can support the 

advantages of the least efficient units and the least efficiency scores. Also, the proposed model 

(4) not only results in strictly positive weights but also can avoid weights dissimilarity and 

reduces the number of efficiency units. 

 
Table 6 The efficiency scores calculated by different models 

 

DMU CCR P = 1 P = 2 P = ∞ 
newEff  

1 1 1 1 1 0.84811 

2 1 0.69075 0.80934 0.701 0.18088 

3 0.9930 0.79342 0.92787 0.85465 0.26452 

4 1 0.73063 0.84573 0.78659 0.20834 

5 1 0.66842 0.73435 0.60994 0.23862 

6 1 0.96111 1 0.9378 0.54676 

7 0.8824 0.70992 0.79691 0.68123 0.19888 

8 0.8702 0.73714 0.79102 0.67624 0.29917 

9 1 0.90926 0.99206 0.85652 0.27843 

10 0.8610 0.65931 0.79523 0.69053 0.21385 

11 1 0.9861 1 0.95951 0.79229 

12 1 0.98946 1 0.99923 1 

13 1 0.66236 065675 0.60252 0.55421 

14 1 0.72485 0.79227 0.73188 0.4918 

15 1 0.9892 1 0.97743 0.87614 

16 1 0.81264 1 0.80582 0.1861 

17 1 0.26075 0.4084 0.28697 0.03807 

18 0.9261 0.55171 0.70309 0.59791 0.12408 

19 1 0.76535 0.9632 1 0.93274 

20 1 0.67464 0.91614 0.91825 0.48008 

21 0.6250 0.51486 0.62597 0.57307 0.21351 

22 1 0.73067 0.77067 0.64983 0.28877 

23 1 0.89938 0.92514 0.78599 0.43252 

24 0.9246 0.36329 0.5063 0.37371 0.08468 

25 0.9877 0.33332 0.55507 0.49013 0.08836 

26 0.7715 0.63452 0.76186 0.67884 0.2265 

27 0.9233 0.58184 0.75177 0.66774 0.17178 

28 0.8700 0.54577 0.703 0.60608 0.16202 
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29 0.7879 0.69571 0.73849 0.66623 0.33423 

30 1 0.66525 0.86281 0.70802 0.16466 

31 1 0.7576 1 0.99733 0.44553 

32 1 0.65895 0.84585 0.6557 0.13007 

33 0.9033 0.53301 0.69768 0.59402 0.13614 

34 1 0.99528 1 1 0.37024 

35 0.7377 0.68044 0.74571 0.73164 0.35526 

36 0.6618 0.55465 0.61504 0.59267 0.27535 

37 0.7277 0.53269 0.65197 0.63335 0.26702 

38 1 0.62215 0.90364 0.87635 0.2882 

39 1 0.86497 0.72151 0.57929 0.17722 

Average 0.934697 0.6967018 0.8082326 0.7316413 0.3579869 

 

 

5 Conclusions 

 

In this paper, an alternative approach has been proposed to address the issue of common set of 

weights (CSW) in DEA literature.  The key point of this method is to minimize deviations of real 

inputs and outputs of units and the virtual inputs and outputs composed of extreme efficient units. 

The proposed model has several contributions in study of common set of weights (CSW). First, 

the proposed model result in strictly positive weights and avoids weight dissimilarity 

simultaneously. Second, the proposed model reduced the efficiency scores and the number of the 

efficient units. The application illustration revealed that the proposed models can support the idea 

of choosing dissimilar and positive  

Common set of weights. 
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