home submit paper guide for authors contact us register search archive current issue journal info
   [صفحه اصلی ]   [Archive]  
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
:: دوره 11، شماره 2 - ( 12-1401 ) ::
جلد 11 شماره 2 صفحات 97-77 برگشت به فهرست نسخه ها
Airline passenger’s sentiment analysis for improving the quality of airline services by using a deep learning approach
چکیده:   (847 مشاهده)
Advances in technology have increased the availability and use of smartphones. Customer experience is one of the major concerns in the aviation industry. Twitter is one of the most popular social media platforms where travelers can share their feedback. Tweets' Classification based on user sentiments, is an important and common task which has addressed in many researches.  Data mining, text mining, web mining, classification for analysis, and illustrating Twitter comments are some of the activities carried out in this field. Text mining is one of the prominent fields of data mining that able to extract useful information from travelers' tweets. This study presents a machine learning-based method for tweets analyzing to improve customer experience handling. The deep learning algorithm identifies ambiguous tweets and decides based on the level of ambiguity. The proposed method provides the feature vector for classification by extracting the word vector from the text analysis, constructing the added Message polarity feature with the WordNet dictionary from the trained examples. The results obtained from the deep learning algorithm validation show that the proposed method is able to identify passenger sentiments in two-class analysis with 99.97% accuracy and in a three-class analysis with 88.83% accuracy.
متن کامل [PDF 952 kb]   (776 دریافت)    
نوع مطالعه: كاربردي | موضوع مقاله: عمومى
دریافت: 1400/11/20 | پذیرش: 1401/4/11
ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nourbakhsh A, Rezaei Chelkasari M. Airline passenger’s sentiment analysis for improving the quality of airline services by using a deep learning approach. International Journal of Applied Operational Research 2023; 11 (2) :77-97
URL: http://ijorlu.liau.ac.ir/article-1-638-fa.html

Airline passenger’s sentiment analysis for improving the quality of airline services by using a deep learning approach. ژورنال بین المللی پژوهش عملیاتی. 1401; 11 (2) :77-97

URL: http://ijorlu.liau.ac.ir/article-1-638-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 11، شماره 2 - ( 12-1401 ) برگشت به فهرست نسخه ها
ژورنال بین المللی پژوهش عملیاتی International Journal of Applied Operational Research - An Open Access Journal
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4660