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Abstract This article introduces a new way to express the implicit complementarity problem and
shows that solving this new version is just as effective as solving the original problem. The authors
also present another alternative version of the problem, which is based on using a strictly increasing
function. Both approaches provide equivalent solutions, offering potentially more efficient or
insightful ways to address the original problem.
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1 Introduction

The implicit complementarity problem (ICP) is a generalization of the classical
complementarity problem that arises in a variety of applications such as optimization,
economic equilibrium models, and engineering systems. Given its complexity and wide
applicability, researchers have explored various equivalent formulations to analyse, solve, and
understand the problem. For details see, [1], [2] and [3]. Bensoussan et al. [4] presented the
implicit complementarity problem (ICP) and it is a class of mathematical optimization
problems that solves a system of nonlinear equations which includes both complementary
conditions and equality or inequality constraints. ICPs can be formulated as follows:

Consider the matrix A € R and the vector b € R", the implicit complementarity
problem denoted as ICP(A, b, ) is to find the solution r € R" to the following system:

H() =r—f(r)>0, FN=Ar+b>0, H(N F(r) =0, (1.1)
where f (r) is a mapping from R" to R".

The study of equivalent forms of the implicit complementarity problem is crucial for
advancing both theoretical understanding and practical solution methods. By transforming
ICP into alternative formulations, researchers can leverage specialized techniques and tools,
leading to more efficient and robust solutions. By leveraging these equivalent formulations,
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researchers have developed algorithms with improved convergence properties and
computational efficiency.

One of the most popular techniques for developing fast and affordable iterative
algorithms is the equivalent formulation of the linear complementarity problem (LCP) as an
equation with the same solution. The LCP (A, b) is described in an analogous form and
several iteration techniques are given by Bai in [2]. For more details on equivalent form of
LCPs and related iteration methods see, [6], [7], [8], [9] and [10]. The concept of equivalent
formulation has also been used effectively for other complementarity problems, like implicit
complementarity problem [8] and [11] and horizontal linear complementarity problem [12].

Mangasarian offered an equivalent forms of LCP(A, b) in [13] and described as

r=(r— wQ(Ar + b)),

where r. € R", (r.);i = max{0, r;} and Q € R™" is a positive diagonal matrix. Motivated by
the works of Mangasarian [13], we present an equivalent form of ICP.

The article is structured as follows: Section 2 introduces an equivalent formulation of the
ICP and outlines conditions necessary for obtaining its solution. Section 3 presents the
conclusions, summarizing the key insights and implications of the study.

2 Main Results

We start by outlining certain fundamental notations that will be utilized in this study. We take
into account real matrices and vectors. R" implies the n dimensional space of real entries. r €
R" is a column vector and r; implies i™ component of the vector r € R".

Now, we provide an equivalent expression of the implicit complementarity problem. The
equivalence form of ICP(A, b, f) is

P(r) = H(r) — (H(r) — (Ar + b)).,

In the following result, we demonstrate that the equivalently formulation of ICP(A, b, f)
has the same solution.
Theorem 2.1. Suppose A € R”" and b € R". Then r* € R" be the solution of ICP(A, b, ) if
and only if P(r<) = 0, where P : R" — R" is defined as

P(r) = H(r) — (H(r) — (Ar + b)), (2.1)
Proof. Suppose P(r*) =0, it follows that (H(r*) —(H(r*) —(Ar* + b)).) = 0. This implies that
H(r) = (H(r*) — (Ar* + b)), (2.2)

Component-wise, we consider two cases:

Case 1. when Hi(r*) > (Ar* + b);, where Hi(r*) denotes the i component of the H(r*).

Then Equation (2.2) can be written as H;(r+) = Hi(r*) — (Ar* + b);.

It follows that, Fi(r*) = (Ar* + b); = 0.

Case 2. when Hj(r) < (Ar* + b); = ((Ar* + b); — Hi(r*)) < 0. Then, we get Hi(r) = 0.

From case (1) and case (2), Hi(r*)Fi(r?) =0 V i = H(r)" F(r*) = 0.

Conversely, let r be the solution of system (1.1). By complementary condition of ICP,
either Hi(r) =0or Fi(r) =0V i.

Component-wise, we consider two cases:

Case 1. If Hi(r) = 0 and Fi(r) > 0, Equation (2.1) becomes
Pi(r+) = (—(—(Ar* +h)).) = Pi(r) = 0,
Case 2. If Hi(r*) > 0 and Fi(r*) = 0, then P;(r*) = (Hi(r*) — (Hi(r*))+) = Pi(r*) = 0.
From case (1) and case (2), we get Pi(r*) =0V i. Then P(r<) = 0. i
Remark 2.1. Let S(r) = H(r) — P(r), then r is the solution of ICP(A, b, f) if and only if

S(r) = H(r).
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In the following result, we show that the ICP(A, b, f) can be equivalently formulated as
an equation with Qj, Q, € R™ be two positive diagonal matrices whose solution remains
unchanged.
Lemma 2.1. Suppose A € R™ and b € R". Let Q1, Q, € R™ be two positive diagonal
matrices and define the mapping P(r) = (Q:H(r) — (QiH(r) — Q2(Ar + b)).). Then r* is the
solution of ICP(A, b, f) if and only if P(r+) = 0.
Proof. Suppose P (r*) = 0, it follows that (Q;H(r*) — (Q:H(r*) — Q(Ar* + b)).) = 0.

Then we write

QiH(r) = (QH(r*) — Qa(Ar + b)), (2.3)
Component-wise, we consider two cases:
Case 1. when (Q1H(r+))i > (Q2(Ar* + b));, then Equation (2.2) becomes
(Q1H(r))i = (QuH(r"))i — (Q2(Ar+ + b)),

Then, (Qz(Ar* + b)); = 0. This implies Fi(r+) = (Ar* + b); = 0.

Case 2. when (Q:H(r*))i < (Q2(Ar* + b));, this implies that:

((€2(Ar +0))i —(Q1H(r))) <0

Then, we get (Q;H(r*))i = 0 = Hi(r*) =0.

From case (1) and case (2), we obtain Hi(r*)Fi(r<) = 0 v i. Hence, H(r*)" F(r*) = 0.

Conversely, let r+ be the solution of system (1.1). Then component-wise, we consider two
cases:

Case 1. when H;(r*) = 0 and Fi(r*) > 0 implies Pi(r*) = —(—(Qu(Ar* + b));)+= Pi(r*) = 0.

Case 2. when H;(r-)>0 and F;(r*) = 0, then Pi(r*) = (QH(r*))i —((QH(r*)))-).

Thus, Pi(r<) = 0.

From case (1) and case (2), we obtain P (r<) = 0. m

In the following result, we show that the ICP(A, b, f) can be equivalently formulated as
an equation with any strictly increasing function such that 6(0)= 0, whose solution must be
same as the ICP(A, b, f).

Theorem 2.2. Suppose A € R™" and b € R". Let 6 : R — R be any strictly increasing function
such that 6(0)= 0 .Then r* is the solution of ICP(A, b, f) if and only if G(r*) = 0, G is the
function from R" to R", given as

Gi(r) = 5(J(Ar + b)i — Hi(¥))) — 6((Ar + b)) —o(Hi(x)),i=1,2,...,n, (2.4)
Proof. For some i, let Hi(r*) < 0. Then it follows that

0 > o(Hi(r)) = o(Fi(r) — Hi(r")) — o(Fi(r)) = —o(Fi(r)), (2.5)
Thus, Fi(r*) > 0 and Fi(r*) — H;(r*) > Fi(r) > 0. This implies that
O(IFi(rv) = Hi(r)[) = o(Fi(r+) — Hi(r)) > o(Fi(r)), (2.6)

From inequalities (2.5) and Equation (2.6), we get G(r*) > 0, this is the contradiction.
If Hi(r*) > 0and Fi(r*) > 0 for some i. Then, we consider two possibilities:
When Hi(r+) > Fi(r*), then o(|Fi(r*) — Hi(r*)|) = o(Hi(r*) — Fi(r*)) < o(Hi(r*)). Therefore
O(IFi(r*) — Hi(r)) —o(Hi(r+)) <0,

It follows that

Gi(r-) <0, (2.7)
When F;i(r+) > Hi(r*), then o(|Fi(r*) — Hi(r*)|) = o(Fi(r*) — Hi(r*)) < o(Fi(r)).
Hence o(|Fi(r*) — Hi(r*)|) — o(Fi(r*)) < 0. This implies that

Gi(r-) <0, (2.8)

From inequalities (2.7) and (2.8), we must have Gj(r) < 0, again a contradiction.
Therefore, r* solves the ICP(A, b, f).
Conversely, let r* be the solution of ICP(A, b, ), then either Hi(r*) =0 or Fi(r*) =0 V i.
Suppose Hi(r*) =0 and Fi(r*) > 0, then G;(r*) = o(|Fi(r*)|) — o(Fi(r*)).
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This implies that G;(r+) = 0.
When Fi(r*) = 0 and Hi(r*) > 0, Then G;(r*) = o(|-Hi(r*)|) — (Hi(r*)).
This implies that Gi(r*) = 0 v i. Therefore, G(r*) = 0. o

3 Conclusion

In this article, we presented an equivalent formulation of the implicit complementarity
problem. We demonstrated that the solution of this equivalent formulation is identical to the
solution of the original implicit complementarity problem. Additionally, by utilizing a strictly
increasing function 6, we provided another equivalent form of the implicit complementarity
problem. The concept of equivalent formulations proves to be an effective approach for
solving complementarity problems.
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